Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Res ; 252(Pt 3): 118967, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642643

RESUMEN

Sulfadimidine (SM2) is an N-substituted derivative of p-aminobenzenesulfonyl structure. This study aimed to analyze the metabolism of SM2 in carp (Cyprinus carpio). The carps were fed with SM2 at a dose of 200 mg/(kg · bw) and then killed. The blood, muscle, liver, kidney, gill, other guts, and carp aquaculture water samples were collected. The UHPLC-Q-Exactive Plus Orbitrap-MS was adopted for determining the metabolites of SM2 in the aforementioned samples. Twelve metabolites, which were divided into metabolites in vivo and metabolites in vitro, were identified using Compound Discoverer software. The metabolic pathways in vivo of SM2 in carp included acetylation, hydroxylation, glucoside conjugation, glycine conjugation, carboxylation, glucuronide conjugation, reduction, and methylation. The metabolic pathways in vitro included oxidation and acetylation. This study clarified the metabolites and metabolic pathways of SM2 in carp and provided a reference for further pharmacodynamic evaluation and use in aquaculture.


Asunto(s)
Carpas , Carpas/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Redes y Vías Metabólicas , Sulfonamidas/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Espectrometría de Masas/métodos
2.
Kidney Int ; 101(2): 315-330, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34774556

RESUMEN

Kidney tubular epithelial cells are high energy-consuming epithelial cells that depend mainly on fatty acid oxidation for an energy supply. AMP-activated protein kinase (AMPK) is a key regulator of energy production in most cells, but the function of AMPK in tubular epithelial cells in acute kidney disease is unclear. Here, we found a rapid decrease in Thr172-AMPKα phosphorylation after ischemia/reperfusion in both in vivo and in vitro models. Mice with kidney tubular epithelial cell-specific AMPKα deletion exhibited exacerbated kidney impairment and apoptosis of tubular epithelial cells after ischemia/reperfusion. AMPKα deficiency was accompanied by the accumulation of lipid droplets in the kidney tubules and the elevation of ceramides and free fatty acid levels following ischemia/reperfusion injury. Mechanistically, ischemia/reperfusion triggered ceramide production and activated protein phosphatase PP2A, which dephosphorylated Thr172-AMPKα. Decreased AMPK activity repressed serine/threonine kinase ULK1-mediated autophagy and impeded clearance of the dysfunctional mitochondria. Targeting the PP2A-AMPK axis by the allosteric AMPK activator C24 restored fatty acid oxidation and reduced tubular cell apoptosis during ischemia/reperfusion-induced injury, by antagonizing PP2A dephosphorylation and promoting the mitophagy process. Thus, our study reveals that AMPKα plays an important role in protecting against tubular epithelial cell injury in ischemia/reperfusion-induced acute kidney injury. Hence, activation of AMPK could be a potential therapeutic strategy for acute kidney injury treatment.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Proteínas Quinasas Activadas por AMP/metabolismo , Lesión Renal Aguda/inducido químicamente , Animales , Apoptosis , Isquemia/metabolismo , Riñón/metabolismo , Ratones , Mitocondrias/metabolismo , Reperfusión , Daño por Reperfusión/complicaciones , Daño por Reperfusión/metabolismo
3.
FASEB J ; 35(11): e21985, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34674317

RESUMEN

Inflammation is broadly recognized as an important factor in the pathogenesis of acute kidney injury (AKI), but pharmacological approaches to alleviate inflammation in AKI have not been proved successful in clinical trials. Macrophage infiltration into renal tissue promotes inflammatory responses that contribute to the pathogenesis of AKI. Suppression of renal tissue inflammatory responses is postulated to improve renal injury of patients and animals. Rhodomeroterpene (RMT) is a novel meroterpenoid isolated from the Rhododendron genus that was shown to exert anti-inflammatory action in vivo or in vitro in this study. We investigated the treatment effects of RMT on LPS-induced sepsis and two different AKI models. The results showed that pretreatment with RMT (30 mg kg-1  d-1 , ip, for 3 days) significantly inhibited acute inflammatory responses in LPS-induced septic mice. In both renal ischemia-reperfusion injury (I/R) and sepsis-induced AKI models, RMT (30 mg kg-1  d-1 , ip, for 3 days) ameliorated renal function and injury and alleviated inflammation by reducing the infiltration of immune cells, including macrophages and neutrophils. Furthermore, our study demonstrated that RMT inhibits inflammatory responses in macrophages. The anti-inflammatory effects of RMT may be due to the inactivation of the IKK/NF-κB and PI3K/PDK1/Akt inflammatory signaling pathways in macrophages. Collectively, our findings indicate that RMT ameliorates renal injury and alleviates the renal inflammatory state in different AKI models, suggesting that RMT may be a potential agent for the treatment of AKI.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Rhododendron/química , Terpenos/farmacología , Animales , Células de la Médula Ósea , Células HEK293 , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7
4.
Acta Pharmacol Sin ; 42(2): 272-281, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32699264

RESUMEN

Insulin resistance is a major cause of type 2 diabetes and metabolic syndrome. Macrophage infiltration into obese adipose tissue promotes inflammatory responses that contribute to the pathogenesis of insulin resistance. Suppression of adipose tissue inflammatory responses is postulated to increase insulin sensitivity in obese patients and animals. Sarsasapogenin (ZGY) is one of the metabolites of timosaponin AIII in the gut, which has been shown to exert anti-inflammatory action. In this study, we investigated the effects of ZGY treatment on obesity-induced insulin resistance in mice. We showed that pretreatment with ZGY (80 mg·kg-1·d-1, ig, for 18 days) significantly inhibited acute adipose tissue inflammatory responses in LPS-treated mice. In high-fat diet (HFD)-fed obese mice, oral administration of ZGY (80 mg·kg-1·d-1, for 6 weeks) ameliorated insulin resistance and alleviated inflammation in adipose tissues by reducing the infiltration of macrophages. Furthermore, we demonstrated that ZGY not only directly inhibited inflammatory responses in macrophages and adipocytes, but also interrupts the crosstalk between macrophages and adipocytes in vitro, improving adipocyte insulin resistance. The insulin-sensitizing and anti-inflammatory effects of ZGY may result from inactivation of the IKK /NF-κB and JNK inflammatory signaling pathways in adipocytes. Collectively, our findings suggest that ZGY ameliorates insulin resistance and alleviates the adipose inflammatory state in HFD mice, suggesting that ZGY may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases.


Asunto(s)
Inflamación/tratamiento farmacológico , Resistencia a la Insulina , Obesidad/tratamiento farmacológico , Espirostanos/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/patología , Tejido Adiposo/efectos de los fármacos , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Inflamación/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/complicaciones , Células RAW 264.7 , Espirostanos/administración & dosificación
5.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35455432

RESUMEN

Currently, chronic kidney disease (CKD) is one of the most common diseases; it is also a serious threat to human health due to its high mortality, and its treatment is still a major clinical challenge. Mitochondrial dyshomeostasis plays an important role in the development of CKD. ZLN005 is a novel peroxisome-proliferator-activated receptor-γ coactivator-1α (PGC-1α) activator from our laboratory. To explore whether ZLN005 can protect against CKD in vivo and in vitro, a unilateral ureteral obstruction (UUO) model and TGF-ß1-treated renal tubular epithelial cells (TECs), respectively, were used in this study. We found that ZLN005-administrated UUO mice showed less kidney damages than control mice, as indicated by the reduced expression of fibrotic biomarkers in the kidney of UUO mice. ZLN005 treatment also alleviated the TGF-ß1-induced fibrotic phenotype and lipid accumulation in TECs. Our study demonstrated ZLN005 treatment improved mitochondrial homeostasis at least partially via the activation of PGC-1α, thus maintaining mitochondria function and energy homeostasis. In summary, ZLN005 treatment ameliorates UUO-induced renal fibrosis, providing conceptional support for mitochondria-targeting therapies for chronic kidney disease.

6.
J Ethnopharmacol ; 293: 115331, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35489662

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acute kidney injury (AKI) is a common clinical disease characterized by rapid loss of renal function. Salvianolate is a prescribed Chinese medicine derived from traditional Chinese medicine Salvia miltiorrhiza bunge that possesses many pharmacological effects, the active components extracted from Salvia miltiorrhiza bunge have been proved to protect ischemia-reperfusion (I/R)-AKI. AIM OF THE STUDY: This study aims to validate the therapeutic effect of SAL on I/R-AKI, and explore its potential pharmacological mechanism. MATERIALS AND METHODS: Mice were pretreated with/without salvianolate (10, 30, and 90 mg/kg) before renal ischemia-reperfusion operation. Serum creatinine, BUN, and H&E staining were performed to evaluate renal function. Immunofluorescence analysis was conducted to measure renal tubular injury including inflammatory factors and peroxide level. Apoptosis of the kidney tissues was determined by TUNEL assay. Keap1-Nrf2-ARE and apoptosis signaling pathways were measured by Western blot, RT-PCR, and YO-PRO-1 staining in kidneys or NRK52E cells. RESULTS: Pretreatment with SAL effectively alleviated renal function and ameliorated epithelial tubular injury, oxidative stress, and inflammatory response. Furthermore, the mechanistic study demonstrated that the SAL exerts anti-apoptotic effects through activation of the Keap1-Nrf2-ARE signaling pathway in renal tubular cells. CONCLUSION: These findings indicate the therapeutic benefit of salvianolate in the protection of renal injury from ischemia-reperfusion, and strengthen the evidence for the AKI treatment strategy by the anti-oxidative stress response, suggesting that SAL may be a potential agent for the treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Daño por Reperfusión , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Animales , Apoptosis , Isquemia/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales , Daño por Reperfusión/metabolismo
7.
Materials (Basel) ; 13(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825550

RESUMEN

The as spun amorphous (Fe78Si9B13)99.5Zr0.5 (Zr0.5) and (Fe78Si9B13)99Zr1 (Zr1) ribbons having a Fenton-like reaction are proved to bear a good degradation performance in organic dye wastewater treatment for the first time by evaluating their degradation efficiency in methylene blue (MB) solution. Compared to the widely studied (Fe78Si9B13)100Zr0 (Zr0) amorphous ribbon for degradation, with increasing cZr (Zr atomic content), the as-spun Zr0, Zr0.5 and Zr1 amorphous ribbons have gradually increased degradation rate of MB solution. According to δc (characteristic distance) of as-spun Zr0, Zr0.5 and Zr1 ribbons, the free volume in Zr1 ribbon is higher Zr0 and Zr0.5 ribbons. In the reaction process, the Zr1 ribbon surface formed the 3D nano-porous structure with specific surface area higher than the cotton floc structure formed by Zr0 ribbon and coarse porous structure formed by Zr0.5 ribbon. The Zr1 ribbon's high free volume and high specific surface area make its degradation rate of MB solution higher than that of Zr0 and Zr0.5 ribbons. This work not only provides a new method to remedying the organic dyes wastewater with high efficiency and low-cost, but also improves an application prospect of Fe-based glassy alloys.

8.
Naunyn Schmiedebergs Arch Pharmacol ; 388(8): 831-41, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25943026

RESUMEN

1-[4-[2-(4-Bromobenzene-sulfonamino)ethyl]phenylsulfonyl]-3-(trans-4-methylcyclohexyl) urea (G004, CAS865483-06-3) is a synthetic sulfonylurea, incorporating the hypoglycemic active structure of glimepiride (CAS 93479-97-1) and anti-TXA2 receptor (TP) active structure of BM-531(CAS 284464-46-6). In this study, we evaluated the effect of G004 on hyperglycemia and dyslipidemia as well as diabetic nephropathy (DN) in db/db mice by gavage over 90 consecutive days of treatment. The fasting blood glucose (FBG), glucose, and insulin tolerance as well as dyslipidemia were effectively ameliorated in db/db mice treated with G004. Interestingly, renal histological results of db/db mice revealed that G004 markedly reversed the expansion of mesangial extracellular matrix (ECM), the early hallmark of DN. Indeed, G004 treatment downregulated the renal expressions of type 4 collagen (Col IV) and transforming growth factor-ß1 (TGF-ß1) in db/db mice. In addition, imbalance in expressions of matrix metalloproteinase-9 (MMP-9) and its tissue inhibitor-1 (TIMP-1) in db/db mice kidneys was observed. However, G004 increased and decreased the expressions of MMP-9 and TIMP-1, respectively. It is well known that TGF-ß pathway signaling plays an essential role in hyperglycemia-induced cell protein synthesis. On the other hand, MMP/TIMP system is responsible for the breakdown and turnover of ECM. Thus, we speculate that G004 possibly attenuated ECM accumulation via remodeling the synthesis and degradation of ECM component Col IV through modulation in TGF-ß1 and MMP-9/TIMP-1 expressions in kidneys of db/db mice. Results from this study provide a strong rationale for G004 to be an efficient glucose-controlling agent with significant reno-protective properties.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Sustancias Protectoras/uso terapéutico , Compuestos de Sulfonilurea/uso terapéutico , Animales , Glucemia/análisis , Colesterol/sangre , Colágeno Tipo IV/metabolismo , Diabetes Mellitus/sangre , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Dislipidemias/sangre , Dislipidemias/tratamiento farmacológico , Dislipidemias/metabolismo , Dislipidemias/patología , Hiperglucemia/sangre , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hiperglucemia/patología , Hipoglucemiantes/farmacología , Riñón/efectos de los fármacos , Riñón/patología , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Tamaño de los Órganos/efectos de los fármacos , Sustancias Protectoras/farmacología , Compuestos de Sulfonilurea/farmacología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA