Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 22(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276647

RESUMEN

Glycosaminoglycans (GAGs) with unique structures from marine animals show intriguing pharmacological activities and negligible biological risks, providing more options for us to explore safer agents. The swim bladder is a tonic food and folk medicine, and its GAGs show good anticoagulant activity. In this study, two GAGs, CMG-1.0 and GMG-1.0, were extracted and isolated from the swim bladder of Cynoscion microlepidotus and Gadus morhua. The physicochemical properties, precise structural characteristics, and anticoagulant activities of these GAGs were determined for the first time. The analysis results of the CMG-1.0 and GMG-1.0 showed that they were chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chains with molecular weights of 109.3 kDa and 123.1 kDa, respectively. They were mainly composed of the repeating disaccharide unit of -{IdoA-α1,3-GalNAc4S-ß1,4-}- (DS-A). The DS-B disaccharide unit of -{IdoA2S-α1,3-GalNAc4S-ß1,4-}- also existed in both CMG-1.0 and GMG-1.0. CMG-1.0 had a higher proportion of CS-O disaccharide unit -{-GlcA-ß1,3-GalNAc-ß1,4-}- but a lower proportion of CS-E disaccharide unit -{-GlcA-ß1,3-GalNAc4S6S-ß1,4-}- than GMG-1.0. The disaccharide compositions of the GAGs varied in a species-specific manner. Anticoagulant activity assay revealed that both CMG-1.0 and GMG-1.0 had potent anticoagulant activity, which can significantly prolong activated partial thromboplastin time. GMG-1.0 also can prolong the thrombin time. CMG-1.0 showed no intrinsic tenase inhibition activity, while GMG-1.0 can obviously inhibit intrinsic tenase with EC50 of 58 nM. Their significantly different anticoagulant activities may be due to their different disaccharide structural units and proportions. These findings suggested that swim bladder by-products of fish processing of these two marine organisms may be used as a source of anticoagulants.


Asunto(s)
Sulfatos de Condroitina , Dermatán Sulfato , Animales , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/química , Dermatán Sulfato/farmacología , Dermatán Sulfato/análisis , Dermatán Sulfato/química , Vejiga Urinaria/química , Glicosaminoglicanos/química , Anticoagulantes/farmacología , Disacáridos
2.
Mar Drugs ; 21(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36976197

RESUMEN

Echinoderms have been attracting increasing attention for their polysaccharides, with unique chemical structure and enormous potential for preparing drugs to treat diseases. In this study, a glucan (TPG) was obtained from the brittle star Trichaster palmiferus. Its structure was elucidated by physicochemical analysis and by analyzing its low-molecular-weight products as degraded by mild acid hydrolysis. The TPG sulfate (TPGS) was prepared, and its anticoagulant activity was investigated for potential development of anticoagulants. Results showed that TPG consisted of a consecutive α1,4-linked D-glucopyranose (D-Glcp) backbone together with a α1,4-linked D-Glcp disaccharide side chain linked through C-1 to C-6 of the main chain. The TPGS was successfully prepared with a degree of sulfation of 1.57. Anticoagulant activity results showed that TPGS significantly prolonged activated partial thromboplastin time, thrombin time, and prothrombin time. Furthermore, TPGS obviously inhibited intrinsic tenase, with an EC50 value of 77.15 ng/mL, which was comparable with that of low-molecular-weight heparin (LMWH) (69.82 ng/mL). TPGS showed no AT-dependent anti-FIIa and anti-FXa activities. These results suggest that the sulfate group and sulfated disaccharide side chains play a crucial role in the anticoagulant activity of TPGS. These findings may provide some information for the development and utilization of brittle star resources.


Asunto(s)
Anticoagulantes , Glucanos , Animales , Anticoagulantes/farmacología , Anticoagulantes/química , Sulfatos/química , Heparina de Bajo-Peso-Molecular , Equinodermos , Polisacáridos/farmacología , Tiempo de Tromboplastina Parcial
3.
Molecules ; 27(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35566376

RESUMEN

Laminaria japonica is widely consumed as a key food and medicine. Polysaccharides are one of the most plentiful constituents of this marine plant. In this study, several polysaccharide fractions with different charge numbers were obtained. Their physicochemical properties and anticoagulant activities were determined by chemical and instrumental methods. The chemical analysis showed that Laminaria japonica polysaccharides (LJPs) and the purified fractions LJP0, LJP04, LJP06, and LJP08 mainly consisted of mannose, glucuronic acid, galactose, and fucose in different mole ratios. LJP04 and LJP06 also contained minor amounts of xylose. The polysaccharide fractions eluted by higher concentration of NaCl solutions showed higher contents of uronic acid and sulfate group. Biological activity assays showed that LJPs LJP06 and LJP08 could obviously prolong the activated partial thromboplastin time (APTT), indicating that they had strong anticoagulant activity. Furthermore, we found that LJP06 exerted this activity by inhibiting intrinsic factor Xase with higher selectivity than other fractions, which may have negligible bleeding risk. The sulfate group may play an important role in the anticoagulant activity. In addition, the carboxyl group and surface morphology of these fractions may affect their anticoagulant activities. The results provide information for applications of L. japonica polysaccharides, especially LJP06 as anticoagulants in functional foods and therapeutic agents.


Asunto(s)
Laminaria , Anticoagulantes/química , Anticoagulantes/farmacología , Laminaria/química , Tiempo de Tromboplastina Parcial , Polisacáridos/química , Polisacáridos/farmacología , Sulfatos
4.
Int J Biol Macromol ; 262(Pt 1): 129969, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325688

RESUMEN

Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.


Asunto(s)
Sulfatos de Condroitina , Dermatán Sulfato , Animales , Sulfatos de Condroitina/farmacología , Sulfatos de Condroitina/química , Dermatán Sulfato/química , Alimentos Funcionales , Glicosaminoglicanos/química
5.
Carbohydr Polym ; 314: 120956, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37173047

RESUMEN

Chlorella is one of the most widely cultivated species of microalgae and has been consumed as a "green healthy food". In this study, a novel polysaccharide (CPP-1) was isolated from Chlorella pyrenoidosa, structurally analyzed, and sulfated as a promising anticoagulant. Structural analyses by chemical and instrumental methods such as monosaccharide composition, methylation-GC-MS and 1D/2D NMR spectroscopy analysis revealed that CPP-1 had a molecular weight of ~13.6 kDa, and mainly consisted of d-mannopyranose (d-Manp), 3-O-methylated d-Manp (3-O-Me-d-Manp), and d-galactopyranose (d-Galp). The molar ratio of d-Manp and d-Galp was 1.0:2.3. CPP-1 consisted of a (1→6)-linked ß-d-Galp backbone substituted at C-3 by the d-Manp and 3-O-Me-d-Manp residues in a molar ratio of 1:1, which was a regular mannogalactan. The sulfated Chlorella mannogalactan (SCM) with sulfated group content of 40.2 % equivalent to that of unfractionated heparin was prepared and analyzed. NMR analysis confirmed its structure, indicating that most free hydroxyl groups in the side chains and partial hydroxyl groups in the backbone were sulfated. Anticoagulant activity assays indicated that SCM exhibited strong anticoagulant activity by inhibiting intrinsic tenase (FXase) with IC50 of 13.65 ng/mL, which may be a safer anticoagulant as an alternative to heparin-like drugs.


Asunto(s)
Anticoagulantes , Chlorella , Anticoagulantes/farmacología , Heparina/farmacología , Sulfatos/química , Polisacáridos/química
6.
Foods ; 11(5)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35267359

RESUMEN

This study was conducted to investigate the prebiotic potential of Chlorella pyrenoidosa polysaccharides to provide useful information for developing C. pyrenoidosa as a green healthy food. C. pyrenoidosa polysaccharides were prepared and their physicochemical characteristics were determined. The digestibility and fermentation characteristics of C. pyrenoidosa polysaccharides were evaluated using in vitro models. The results revealed that C. pyrenoidosa polysaccharides were composed of five non-starch polysaccharide fractions with monosaccharide compositions of Man, Rib, Rha, GlcA, Glc, Gal, Xyl and Ara. C. pyrenoidosa polysaccharides could not be degraded under saliva and the gastrointestinal conditions. However, the molecular weight and contents of residual carbohydrates and reducing sugars of C. pyrenoidosa polysaccharides were significantly reduced after fecal fermentation at a moderate speed. Notably, C. pyrenoidosa polysaccharides could remarkably modulate gut microbiota, including the promotion of beneficial bacteria, inhibition of growth of harmful bacteria, and reduction of the ratio of Firmicutes to Bacteroidetes. Intriguingly, C. pyrenoidosa polysaccharides can promote growth of Parabacteroides distasonis and increase short-chain fatty acid contents, thereby probably contributing to the promotion of intestinal health and prevention of diseases. Thus, these results suggested that C. pyrenoidosa polysaccharides had prebiotic functions with different fermentation characteristics compared with conventional prebiotics such as fructooligosaccharide, and they may be a new prebiotic for improving human health.

7.
Carbohydr Polym ; 251: 117034, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33142592

RESUMEN

Antithrombotic drugs have some side effects, such as risk of serious bleeding. Development of antithrombotic drugs that inhibit components of the intrinsic coagulation pathway and have a low risk of causing bleeding has recently been a focus of research. Fucosylated glycosaminoglycan (FG), also named as fucosylated chondroitin sulfate (FCS), has potent anticoagulant activity and inhibits intrinsic factor tenase (FXase) complex. Low-molecular-weight FG (LFG) and its oligosaccharides show characteristics of anticoagulant and antithrombotic activities with negligible side effects, such as activation of human FXII, induction of platelet aggregation, and especially, the risk of serious bleeding. They are potential new anticoagulant drugs and have been extensively studied in recent years. This review presents recent findings regarding the preparation, structural analysis, pharmacological activity, and structure-activity relationships of LFG and its derived oligosaccharides, so as to provide a reference for the development of new anticoagulants with low side effects.


Asunto(s)
Anticoagulantes , Coagulación Sanguínea/efectos de los fármacos , Sulfatos de Condroitina , Hemorragia/tratamiento farmacológico , Oligosacáridos , Pepinos de Mar/química , Animales , Anticoagulantes/química , Anticoagulantes/farmacología , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Humanos , Estructura Molecular , Oligosacáridos/química , Oligosacáridos/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA