Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(15): 2768-2780.e6, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37402371

RESUMEN

Type V CRISPR-associated systems (Cas)12 family nucleases are considered to have evolved from transposon-associated TnpB, and several of these nucleases have been engineered as versatile genome editors. Despite the conserved RNA-guided DNA-cleaving functionality, these Cas12 nucleases differ markedly from the currently identified ancestor TnpB in aspects such as guide RNA origination, effector complex composition, and protospacer adjacent motif (PAM) specificity, suggesting the presence of earlier evolutionary intermediates that could be mined to develop advanced genome manipulation biotechnologies. Using evolutionary and biochemical analyses, we identify that the miniature type V-U4 nuclease (referred to as Cas12n, 400-700 amino acids) is likely the earliest evolutionary intermediate between TnpB and large type V CRISPR systems. We demonstrate that with the exception of CRISPR array emergence, CRISPR-Cas12n shares several similar characteristics with TnpB-ωRNA, including a miniature and likely monomeric nuclease for DNA targeting, origination of guide RNA from nuclease coding sequence, and generation of a small sticky end following DNA cleavage. Cas12n nucleases recognize a unique 5'-AAN PAM sequence, of which the A nucleotide at the -2 position is also required for TnpB. Moreover, we demonstrate the robust genome-editing capacity of Cas12n in bacteria and engineer a highly efficient CRISPR-Cas12n (termed Cas12Pro) with up to 80% indel efficiency in human cells. The engineered Cas12Pro enables base editing in human cells. Our results further expand the understanding regarding type V CRISPR evolutionary mechanisms and enrich the miniature CRISPR toolbox for therapeutic applications.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Endonucleasas/genética , ADN/genética , ARN
2.
BMC Genomics ; 25(1): 330, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565995

RESUMEN

Plant growth and development can be significantly impacted by drought stress. Plants will adjust the synthesis and accumulation of secondary metabolites to improve survival in times of water constraint. Simultaneously, drought stress can lead to modifications in the DNA methylation status of plants, and these modifications can directly impact gene expression and product synthesis by changing the DNA methylation status of functional genes involved in secondary metabolite synthesis. However, further research is needed to fully understand the extent to which DNA methylation modifies the content of secondary metabolites to mediate plants' responses to drought stress, as well as the underlying mechanisms involved. Our study found that in Eleutherococcus senticosus (E. senticosus), moderate water deprivation significantly decreased DNA methylation levels throughout the genome and at the promoters of EsFPS, EsSS, and EsSE. Transcription factors like EsMYB-r1, previously inhibited by DNA methylation, can re-bind to the EsFPS promotor region following DNA demethylation. This process promotes gene expression and, ultimately, saponin synthesis and accumulation. The increased saponin levels in E. senticosus acted as antioxidants, enhancing the plant's adaptability to drought stress.


Asunto(s)
Eleutherococcus , Saponinas , Metilación de ADN , Eleutherococcus/genética , Eleutherococcus/metabolismo , Metabolismo Secundario , Sequías
3.
Eur J Neurosci ; 60(2): 4034-4048, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38764192

RESUMEN

Alzheimer's disease (AD) stands as the prevalent progressive neurodegenerative disease, precipitating cognitive impairment and even memory loss. Amyloid biomarkers have been extensively used in the diagnosis of AD. However, amyloid proteins offer limited information about the disease process and accurate diagnosis depends on the presence of a substantial accumulation of amyloid deposition which significantly impedes the early screening of AD. In this study, we have combined plasma proteomics with an ensemble learning model (CatBoost) to develop a cost-effective and non-invasive diagnostic method for AD. A longitudinal panel has been identified that can serve as reliable biomarkers across the entire progression of AD. Simultaneously, we have developed a neural network algorithm that utilizes plasma proteins to detect stages of Alzheimer's disease. Based on the developed longitudinal panel, the CatBoost model achieved an area under the operating curve of at least 0.90 in distinguishing mild cognitive impairment from cognitively normal. The neural network model was utilized for the detection of three stages of AD, and the results demonstrated that the neural network model exhibited an accuracy as high as 0.83, surpassing that of the traditional machine learning model.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Diagnóstico Precoz , Aprendizaje Automático , Redes Neurales de la Computación , Proteoma , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Humanos , Anciano , Biomarcadores/sangre , Masculino , Femenino , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/sangre , Proteómica/métodos , Anciano de 80 o más Años
4.
J Aging Phys Act ; 32(4): 531-540, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38684216

RESUMEN

Resistance training is used to combat skeletal muscle function decline in older adults. Few studies have been designed specific for females, resulting in very limited treatment options for skeletal muscle atrophy in aging women. Here, we analyzed the gene expression profiles of skeletal muscle samples from sedentary young women, sedentary older women, and resistance-trained older women, using microarray data from public database. A total of 45 genes that were differentially expressed during female muscle aging and reversed by resistance training were identified. Functional and pathway enrichment analysis, protein-protein interaction network analysis, and receiver operating characteristic analysis were performed to reveal the key genes and pathways involved in the effects of resistance training on female muscle aging. The collagen genes COL1A1, COL3A1, and COL4A1 were identified important regulators of female muscle aging and resistance training, by modulating multiple signaling pathways, such as PI3 kinase-Akt signaling, focal adhesions, extracellular matrix-receptor interactions, and relaxin signaling. Interestingly, the expression of CDKN1A and TP63 were increased during aging, and further upregulated by resistance training in older women, suggesting they may negatively affect resistance training outcomes. Our findings provide novel insights into the molecular mechanisms of resistance training on female muscle aging and identify potential biomarkers and targets for clinical intervention.


Asunto(s)
Envejecimiento , Biología Computacional , Músculo Esquelético , Entrenamiento de Fuerza , Entrenamiento de Fuerza/métodos , Femenino , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Envejecimiento/fisiología , Envejecimiento/genética , Anciano , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Adulto , Persona de Mediana Edad , Transducción de Señal , Adulto Joven
5.
Langmuir ; 39(13): 4720-4729, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36951244

RESUMEN

Although self-healing elastomers have been developed in a great breakthrough, it is still a challenge to develop one kind of material that can respond to the fracture instantly even though this characteristic plays an essential role in emergency circumstances. Herein, we adopt free radical polymerization to construct one polymer network equipped with two weak interactions (dipole-dipole interaction and hydrogen bonding). The elastomer we synthesized has a high self-healing efficiency (100%) and a very short healing time (3 min) in an air atmosphere, and it can also self-heal in seawater, showing an ideal healing efficiency of >80%. Additionally, on account of its high elongation (>1000%) and antifatigue capacity (no rupture after loading-unloading 2000 times), the elastomer can be utilized in a wide range of applications, including e-skin and soft robot fields.

6.
J Chem Inf Model ; 63(16): 5089-5096, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37566518

RESUMEN

The theoretical rational design of organic semiconductors faces an obstacle in that the performance of organic semiconductors depends very much on their stacking and local morphology (for example, phase domains), which involves numerous molecules. Simulation becomes computationally expensive as intermolecular electronic couplings have to be calculated from density functional theory. Therefore, developing fast and accurate methods for intermolecular electronic coupling estimation is essential. In this work, by developing a series of new intermolecular 3D descriptors, we achieved fast and accurate prediction of electronic couplings in both crystalline and amorphous thin films. Three groups of developed descriptors could perform faster and higher accuracy prediction on electronic couplings than the most advanced state-of-the-art descriptors. This work paves the way for large-scale simulations, high-throughput calculations, and screening of organic semiconductors.


Asunto(s)
Semiconductores , Simulación por Computador
7.
Proc Natl Acad Sci U S A ; 117(10): 5463-5471, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32079726

RESUMEN

Chronic pain is a major clinical problem of which the mechanisms are incompletely understood. Here, we describe the concept that PI16, a protein of unknown function mainly produced by fibroblasts, controls neuropathic pain. The spared nerve injury (SNI) model of neuropathic pain increases PI16 protein levels in fibroblasts in dorsal root ganglia (DRG) meninges and in the epi/perineurium of the sciatic nerve. We did not detect PI16 expression in neurons or glia in spinal cord, DRG, and nerve. Mice deficient in PI16 are protected against neuropathic pain. In vitro, PI16 promotes transendothelial leukocyte migration. In vivo, Pi16-/- mice show reduced endothelial barrier permeability, lower leukocyte infiltration and reduced activation of the endothelial barrier regulator MLCK, and reduced phosphorylation of its substrate MLC2 in response to SNI. In summary, our findings support a model in which PI16 promotes neuropathic pain by mediating a cross-talk between fibroblasts and the endothelial barrier leading to barrier opening, cellular influx, and increased pain. Its key role in neuropathic pain and its limited cellular and tissue distribution makes PI16 an attractive target for pain management.


Asunto(s)
Fibroblastos/enzimología , Neuralgia/genética , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Animales , Movimiento Celular , Dolor Crónico , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Ganglios Espinales , Leucocitos/fisiología , Meninges/citología , Ratones Noqueados , Traumatismos de los Nervios Periféricos/fisiopatología , Nervio Ciático/enzimología
8.
Brain Behav Immun ; 100: 287-296, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34915156

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) impacts a growing number of cancer survivors and treatment options are limited. Histone deacetylase 6 (HDAC6) inhibitors are attractive candidates because they reverse established CIPN and may enhance anti-tumor effects of chemotherapy. Before considering clinical application of HDAC6 inhibitors, the mechanisms underlying reversal of CIPN need to be identified. We showed previously that deletion of Hdac6 from sensory neurons did not prevent cisplatin-induced mechanical hypersensitivity, while global deletion of Hdac6 was protective, indicating involvement of HDAC6 in other cell types. Here we show that local depletion of MRC1 (CD206)-positive macrophages without affecting microglia by intrathecal administration of mannosylated clodronate liposomes reduced the capacity of an HDAC6 inhibitor to reverse cisplatin-induced mechanical hypersensitivity. The HDAC6 inhibitor increased spinal cord Il10 mRNA and this was M2-macrophage dependent. Intrathecal administration of anti-IL-10 antibody or genetic deletion of Il10 prevented resolution of mechanical hypersensitivity. Genetic deletion of the IL-10 receptor from Advillin+ neurons prevented resolution of mechanical hypersensitivity in mice treated with the HDAC6 inhibitor. These findings indicate that treatment with an HDAC6 inhibitor increases macrophage-derived IL-10 signaling to IL-10 receptors on Advillin+ sensory neurons to resolve mechanical hypersensitivity. Cisplatin decreases mitochondrial function in sensory axons, and HDAC6 inhibition can promote axonal transport of healthy mitochondria. Indeed, the HDAC6 inhibitor normalized cisplatin-induced tibial nerve mitochondrial deficits. However, this was independent of macrophages and IL-10 signaling. In conclusion, our findings indicate that administration of an HDAC6 inhibitor reverses cisplatin-induced mechanical hypersensitivity through two complementary pathways: macrophage HDAC6 inhibition to promote IL-10 production and IL-10 signaling to DRG neurons, and neuronal HDAC6 inhibition to restore axonal mitochondrial health.


Asunto(s)
Antineoplásicos , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Hiperalgesia , Animales , Antineoplásicos/efectos adversos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Interleucina-10/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL
9.
Langmuir ; 38(29): 8862-8870, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35819072

RESUMEN

The self-healing property of biological tissues gives humans inspiration to endow artificial synthetic materials with self-healing functions. Herein, we report a thermoplastic elastomer that can be self-repaired in a short time, which uses dual dynamic bonds (hydrogen bonds and disulfide bonds) coupled to realize its self-healing function through the rapid conversion of dynamic hydrogen bonds between the hard and soft segments, as well as the dynamic bonding and dissociation of disulfide bonds. Furthermore, the maximum tensile strength and strain of the elastomer can reach 17.4 MPa and 3780%, respectively, and the maximum self-healing rate is close to 100% (temperature: 90 °C, time: 5 h). The arrays' arrangement and reversibility of hydrogen bonds endow the elastomer with high toughness and self-healing properties and thus solve the problem that ordinary polymers cannot self-heal.


Asunto(s)
Elastómeros , Polímeros , Disulfuros , Elastómeros/química , Humanos , Enlace de Hidrógeno , Polímeros/química , Temperatura
10.
Int J Sports Med ; 43(14): 1214-1225, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36063823

RESUMEN

The heart is a highly adaptable organ that responds to changes in functional requirements due to exposure to internal and external stimuli. Physical exercise has unique stimulatory effects on the myocardium in both healthy individuals and those with health disorders, where the effects are primarily determined by the intensity and recovery time of exercise. We investigated the time-dependent effects of different exercise intensities on myocardial transcriptional expression in rats. Moderate intensity exercise induced more differentially expressed genes in the myocardium than high intensity exercise, while 16 differentially expressed genes were down-regulated by moderate intensity exercise but up-regulated by high intensity exercise at 12 h post- exercise. Both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that moderate intensity exercise specifically regulated gene expression related to heart adaptation, energy metabolism, and oxidative stress, while high intensity exercise specifically regulated gene expression related to immunity, inflammation, and apoptosis. Moreover, there was increased expression of Tbx5, Casq1, Igsf1, and Ddah1 at all time points after moderate intensity exercise, while there was increased expression of Card9 at all time points after high intensity exercise. Our study provides a better understanding of the intensity dependent effects of physical exercise of the molecular mechanisms of cardiac adaptation to physical exercise.


Asunto(s)
Miocardio , Condicionamiento Físico Animal , Transcriptoma , Animales , Ratas , Corazón , Miocardio/metabolismo
11.
Brain Behav Immun ; 93: 43-54, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33316379

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most frequently reported adverse effects of cancer treatment. CIPN often persists long after treatment completion and has detrimental effects on patient's quality of life. There are no efficacious FDA-approved drugs for CIPN. We recently demonstrated that nasal administration of mesenchymal stem cells (MSC) reverses the cognitive deficits induced by cisplatin in mice. Here we show that nasal administration of MSC after cisplatin- or paclitaxel treatment- completely reverses signs of established CIPN, including mechanical allodynia, spontaneous pain, and loss of intraepidermal nerve fibers (IENF) in the paw. The resolution of CIPN is associated with normalization of the cisplatin-induced decrease in mitochondrial bioenergetics in DRG neurons. Nasally administered MSC enter rapidly the meninges of the brain, spinal cord and peripheral lymph nodes to promote IL-10 production by macrophages. MSC-mediated resolution of mechanical allodynia, recovery of IENFs and restoration of DRG mitochondrial function critically depends on IL-10 production. MSC from IL-10 knockout animals are not capable of reversing the symptoms of CIPN. Moreover, WT MSC do not reverse CIPN in mice lacking IL-10 receptors on peripheral sensory neurons. In conclusion, only two nasal administrations of MSC fully reverse CIPN and the associated mitochondrial abnormalities via an IL-10 dependent pathway. Since MSC are already applied clinically, we propose that nasal MSC treatment could become a powerful treatment for the large group of patients suffering from neurotoxicities of cancer treatment.


Asunto(s)
Antineoplásicos , Células Madre Mesenquimatosas , Enfermedades del Sistema Nervioso Periférico , Administración Intranasal , Animales , Antineoplásicos/toxicidad , Modelos Animales de Enfermedad , Humanos , Ratones , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/terapia , Calidad de Vida
12.
Angew Chem Int Ed Engl ; 60(17): 9573-9579, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33586834

RESUMEN

In many critical biological processes, host-guest chemistry of protein receptors is regulated by effector molecules to realize cascaded delivery of messenger molecules between different targets. Mimicking these natural processes with artificial receptors remains a challenge. Herein, we report a cascaded guest delivery between two anionocages (anion-coordination-driven cages), in a reversible manner, wherein binding of K+ ions by a crown ether functionalized, heteroleptic A2 L3 (A=anion, L=ligand) anionocage triggers the release and delivery of a TEA+ (tetraethylammonium) guest to another A2 L3 anionocage that is a weaker and less K+ -sensitive receptor. Elimination of the K+ with [2,2,2]-cryptand enables recapture of the TEA+ by the crown ether functionalized anionocage and thus realizes a reversed guest delivery. Moreover, integrative self-sorting of anionocages is firstly reported, leading to heteroleptic cages with enhanced guest binding affinities.

13.
Anesthesiology ; 132(2): 343-356, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31939850

RESUMEN

BACKGROUND: Available treatments for neuropathic pain have modest efficacy and significant adverse effects, including abuse potential. Because oxidative stress is a key mechanistic node for neuropathic pain, the authors focused on the master regulator of the antioxidant response-nuclear factor erythroid 2-related factor 2 (NFE2L2; Nrf2)-as an alternative target for neuropathic pain. The authors tested whether dimethyl fumarate (U.S. Food and Drug Administration-approved treatment for multiple sclerosis) would activate NFE2L2 and promote antioxidant activity to reverse neuropathic pain behaviors and oxidative stress-dependent mechanisms. METHODS: Male Sprague Dawley rats, and male and female wild type and Nfe2l2 mice were treated with oral dimethyl fumarate/vehicle for 5 days (300 mg/kg; daily) after spared nerve injury/sham surgery (n = 5 to 8 per group). Allodynia was measured in von Frey reflex tests and hyperalgesia in operant conflict-avoidance tests. Ipsilateral L4/5 dorsal root ganglia were assayed for antioxidant and cytokine/chemokine levels, and mitochondrial bioenergetic capacity. RESULTS: Dimethyl fumarate treatment reversed mechanical allodynia (injury-vehicle, 0.45 ± 0.06 g [mean ± SD]; injury-dimethyl fumarate, 8.2 ± 0.16 g; P < 0.001) and hyperalgesia induced by nerve injury (injury-vehicle, 2 of 6 crossed noxious probes; injury-dimethyl fumarate, 6 of 6 crossed; P = 0.013). The antiallodynic effect of dimethyl fumarate was lost in nerve-injured Nfe2l2 mice, but retained in nerve-injured male and female wild type mice (wild type, 0.94 ± 0.25 g; Nfe2l2, 0.02 ± 0.01 g; P < 0.001). Superoxide dismutase activity was increased by dimethyl fumarate after nerve injury (injury-vehicle, 3.96 ± 1.28 mU/mg; injury-dimethyl fumarate, 7.97 ± 0.47 mU/mg; P < 0.001). Treatment reduced the injury-dependent increases in cytokines and chemokines, including interleukin-1ß (injury-vehicle, 13.30 ± 2.95 pg/mg; injury-dimethyl fumarate, 6.33 ± 1.97 pg/mg; P = 0.022). Injury-impaired mitochondrial bioenergetics, including basal respiratory capacity, were restored by dimethyl fumarate treatment (P = 0.025). CONCLUSIONS: Dimethyl fumarate, a nonopioid and orally-bioavailable drug, alleviated nociceptive hypersensitivity induced by peripheral nerve injury via activation of NFE2L2 antioxidant signaling. Dimethyl fumarate also resolved neuroinflammation and mitochondrial dysfunction-oxidative stress-dependent mechanisms that drive nociceptive hypersensitivity after nerve injury.


Asunto(s)
Antioxidantes/metabolismo , Dimetilfumarato/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Animales , Dimetilfumarato/farmacología , Femenino , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Roedores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
14.
Int J Mol Sci ; 21(14)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659913

RESUMEN

Dual leucine zipper kinase (DLK, Map3k12) is an axonal protein that governs the balance between degeneration and regeneration through its downstream effectors c-jun N-terminal kinase (JNK) and phosphorylated c-jun (p-c-Jun). In peripheral nerves DLK is generally inactive until induced by injury, after which it transmits signals to the nucleus via retrograde transport. Here we report that in contrast to this mode of regulation, in the uninjured adult mouse cerebellum, DLK constitutively drives nuclear p-c-Jun in cerebellar granule neurons, whereas in the forebrain, DLK is similarly expressed and active, but nuclear p-c-Jun is undetectable. When neurodegeneration results from mutant human tau in the rTg4510 mouse model, p-c-Jun then accumulates in neuronal nuclei in a DLK-dependent manner, and the extent of p-c-Jun correlates with markers of synaptic loss and gliosis. This regional difference in DLK-dependent nuclear p-c-Jun accumulation could relate to differing levels of JNK scaffolding proteins, as the cerebellum preferentially expresses JNK-interacting protein-1 (JIP-1), whereas the forebrain contains more JIP-3 and plenty of SH3 (POSH). To characterize the functional differences between constitutive- versus injury-induced DLK signaling, RNA sequencing was performed after DLK inhibition in the cerebellum and in the non-transgenic and rTg4510 forebrain. In all contexts, DLK inhibition reduced a core set of transcripts that are associated with the JNK pathway. Non-transgenic forebrain showed almost no other transcriptional changes in response to DLK inhibition, whereas the rTg4510 forebrain and the cerebellum exhibited distinct differentially expressed gene signatures. In the cerebellum, but not the rTg4510 forebrain, pathway analysis indicated that DLK regulates insulin growth factor-1 (IGF1) signaling through the transcriptional induction of IGF1 binding protein-5 (IGFBP5), which was confirmed and found to be functionally relevant by measuring signaling through the IGF1 receptor. Together these data illuminate the complex multi-functional nature of DLK signaling in the central nervous system (CNS) and demonstrate its role in homeostasis as well as tau-mediated neurodegeneration.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/fisiología , Homeostasis/fisiología , Quinasas Quinasa Quinasa PAM/metabolismo , Estrés Fisiológico/fisiología , Animales , Axones/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Transducción de Señal/fisiología , Transcriptoma/fisiología
15.
Cancer ; 124(11): 2289-2298, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29461625

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse side effect of many chemotherapeutic agents, affecting >60% of patients with cancer. Moreover, CIPN persists long into survivorship in approximately 20% to 30% of these patients. To the authors' knowledge, no drugs have been approved to date by the US Food and Drug Administration to effectively manage chemotherapy-induced neuropathic pain. The majority of the drugs tested for the management of CIPN aim at symptom relief, including pain and paresthesia, yet are not very efficacious. The authors propose that there is a need to acquire a more thorough understanding of the etiology of CIPN so that effective, mechanism-based, disease-modifying interventions can be developed. It is important to note that such interventions should not interfere with the antitumor effects of chemotherapy. Mitochondria are rod-shaped cellular organelles that represent the powerhouses of the cell, in that they convert oxygen and nutrients into the cellular energy "currency" adenosine triphosphate. In addition, mitochondria regulate cell death. Neuronal mitochondrial dysfunction and the associated nitro-oxidative stress represent crucial final common pathways of CIPN. Herein, the authors discuss the potential to prevent or reverse CIPN by protecting mitochondria and/or inhibiting nitro-oxidative stress with novel potential drugs, including the mitochondrial protectant pifithrin-µ, histone deacetylase 6 inhibitors, metformin, antioxidants, peroxynitrite decomposition catalysts, and anti-inflammatory mediators including interleukin 10. This review hopefully will contribute toward bridging the gap between preclinical research and the development of realistic novel therapeutic strategies to prevent or reverse the devastating neurotoxic effects of chemotherapy on the (peripheral) nervous system. Cancer 2018;124:2289-98. © 2018 American Cancer Society.


Asunto(s)
Antineoplásicos/efectos adversos , Neoplasias/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Manejo del Dolor/métodos , Antineoplásicos/administración & dosificación , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Dinámicas Mitocondriales/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Neuralgia/inducido químicamente , Neuralgia/patología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos , Calidad de Vida
16.
Breast Cancer Res Treat ; 158(2): 219-32, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27372070

RESUMEN

Gene fusions have long been considered principally as the oncogenic events of hematologic malignancies, but have recently gained wide attention in solid tumors due to several milestone discoveries and the advancement of deep sequencing technologies. With the progress in deep sequencing studies of breast cancer transcriptomes and genomes, the discovery of recurrent and pathological gene fusions in breast cancer is on the focus. Recently, driven by new deep sequencing studies, several recurrent or pathological gene fusions have been identified in breast cancer, including ESR1-CCDC170, SEC16A-NOTCH1, SEC22B-NOTCH2, and ESR1-YAP1 etc. More important, most of these gene fusions are preferentially identified in the more aggressive breast cancers, such as luminal B, basal-like, or endocrine-resistant breast cancer, suggesting recurrent gene fusions as additional key driver events in these tumors other than the known drivers such as the estrogen receptor. In this paper, we have comprehensively summarized the newly identified recurrent or pathological gene fusion events in breast cancer, reviewed the contributions of new genomic and deep sequencing technologies to new fusion discovery and the integrative bioinformatics tools to analyze these data, highlighted the biological relevance and clinical implications of these fusion discoveries, and discussed future directions of gene fusion research in breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Fusión Génica , Genómica/métodos , Neoplasias de la Mama/genética , Femenino , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ADN
17.
J Pharmacol Exp Ther ; 348(2): 281-92, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24263156

RESUMEN

Impaired neuronal mitochondrial bioenergetics contributes to the pathophysiologic progression of diabetic peripheral neuropathy (DPN) and may be a focal point for disease management. We have demonstrated that modulating heat shock protein (Hsp) 90 and Hsp70 with the small-molecule drug KU-32 ameliorates psychosensory, electrophysiologic, morphologic, and bioenergetic deficits of DPN in animal models of type 1 diabetes. The current study used mouse models of type 1 and type 2 diabetes to determine the relationship of changes in sensory neuron mitochondrial bioenergetics to the onset of and recovery from DPN. The onset of DPN showed a tight temporal correlation with a decrease in mitochondrial bioenergetics in a genetic model of type 2 diabetes. In contrast, sensory hypoalgesia developed 10 weeks before the occurrence of significant declines in sensory neuron mitochondrial bioenergetics in the type 1 model. KU-32 therapy improved mitochondrial bioenergetics in both the type 1 and type 2 models, and this tightly correlated with a decrease in DPN. Mechanistically, improved mitochondrial function following KU-32 therapy required Hsp70, since the drug was ineffective in diabetic Hsp70 knockout mice. Our data indicate that changes in mitochondrial bioenergetics may rapidly contribute to nerve dysfunction in type 2 diabetes, but not type 1 diabetes, and that modulating Hsp70 offers an effective approach toward correcting sensory neuron bioenergetic deficits and DPN in both type 1 and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Neuropatías Diabéticas/prevención & control , Proteínas HSP70 de Choque Térmico/metabolismo , Hipoglucemiantes/uso terapéutico , Mitocondrias/efectos de los fármacos , Novobiocina/análogos & derivados , Fosforilación Oxidativa/efectos de los fármacos , Animales , Células Cultivadas , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Relación Dosis-Respuesta a Droga , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Proteínas HSP70 de Choque Térmico/genética , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/sangre , Hipoglucemiantes/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/enzimología , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Neuritis/prevención & control , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/sangre , Fármacos Neuroprotectores/farmacocinética , Fármacos Neuroprotectores/uso terapéutico , Novobiocina/administración & dosificación , Novobiocina/sangre , Novobiocina/farmacocinética , Novobiocina/uso terapéutico , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo
18.
Small Methods ; : e2301758, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967205

RESUMEN

Organogenesis, the phase of embryonic development that starts at the end of gastrulation and continues until birth is the critical process for understanding cellular differentiation and maturation during organ development. The rapid development of single-cell transcriptomics technology has led to many novel discoveries in understanding organogenesis while also accumulating a large quantity of data. To fill this gap, OrganogenesisDB (http://organogenesisdb.com/), which is a comprehensive database dedicated to exploring cell-type identification and gene expression dynamics during organogenesis, is developed. OrganogenesisDB contains single-cell RNA sequencing data for more than 1.4 million cells from 49 published datasets spanning various developmental stages. Additionally, 3324 cell markers are manually curated for 1120 cell types across 9 human organs and 4 mouse organs. OrganogenesisDB leverages various analysis tools to assist users in annotating and understanding cell types at different developmental stages and helps in mining and presenting genes that exhibit specific patterns and play key regulatory roles during cell maturation and differentiation. This work provides a critical resource and useful tool for deciphering cell lineage determination and uncovering the mechanisms underlying organogenesis.

19.
Heliyon ; 10(1): e23318, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38148826

RESUMEN

Mechanosensitive ion channels are a class of membrane-integrated proteins that convert externalmechanical forces, including stretching, pressure, gravity, and osmotic pressure changes, some of which can be caused by pathogen invasion, into electrical and chemical signals transmitted to the cytoplasm. In recent years, with the identification of many of these channels, their roles in the initiation and progression of many diseases have been gradually revealed. Multiple studies have shown that mechanosensitive ion channels regulate the proliferation, activation, and inflammatory responses of immune cells by being expressed on the surface of immune cells and further responding to mechanical forces. Nonetheless, further clarification is required regarding the signaling pathways of immune-cell pattern-recognition receptors and on the impact of microenvironmental changes and mechanical forces on immune cells. This review summarizes the roles of mechanosensitive ion channels in immune cells.

20.
PLoS One ; 19(2): e0299382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394259

RESUMEN

BACKGROUND: Endothelial cell injury is one of the important pathogenic mechanisms in thrombotic diseases, and also neutrophils are involved. MicroRNAs (miRNAs) have been demonstrated to act as essential players in endothelial cell injury, but the potential molecular processes are unknown. In this study, we used cellular tests to ascertain the protective effect of miR-328-3p on human umbilical vein endothelial cells (HUVECs) treated with oxygen-glucose deprivation (OGD). METHODS: In our study, an OGD-induced HUVECs model was established, and we constructed lentiviral vectors to establish stable HUVECs cell lines. miR-328-3p and Toll-like receptor 2 (TLR2) interacted, as demonstrated by the dual luciferase reporter assay. We used the CCK8, LDH release, and EdU assays to evaluate the proliferative capacity of each group of cells. To investigate the expression of TLR2, p-P65 NF-κB, P65 NF-κB, NLRP3, IL-1ß, and IL-18, we employed Western blot and ELISA. Following OGD, each group's cell supernatants were gathered and co-cultured with neutrophils. An immunofluorescence assay and Transwell assay have been performed to determine whether miR-328-3p/TLR2 interferes with neutrophil migration and neutrophil extracellular traps (NETs) formation. RESULTS: In OGD-treated HUVECs, the expression of miR-328-3p is downregulated. miR-328-3p directly targets TLR2, inhibits the NF-κB signaling pathway, and reverses the proliferative capacity of OGD-treated HUVECs, while inhibiting neutrophil migration and neutrophil extracellular trap formation. CONCLUSIONS: miR-328-3p inhibits the NF-κB signaling pathway in OGD-treated HUVECs while inhibiting neutrophil migration and NETs formation, and ameliorating endothelial cell injury, which provides new ideas for the pathogenesis of thrombotic diseases.


Asunto(s)
Trampas Extracelulares , MicroARNs , Humanos , FN-kappa B/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Trampas Extracelulares/metabolismo , Oxígeno/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Glucosa/farmacología , Transducción de Señal , MicroARNs/metabolismo , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA