Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cancer Cell Int ; 24(1): 14, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184626

RESUMEN

BACKGROUND: Osteosarcoma is one of the most common malignant bone tumors with bad prognosis. Necroptosis is a form of programmed cell death. Recent studies showed that targeting necroptosis was a new promising approach for tumor therapy. This study aimed to establish a necroptosis-related gene signature to evaluated prognosis and explore the relationship between necroptosis and osteosarcoma. METHODS: Data from The Cancer Genome Atlas was used for developing the signature and the derived necroptosis score (NS). Data from Gene Expression Omnibus served as validation. Principal component analysis (PCA), Cox regression, receiver operating characteristic (ROC) curves and Kaplan-Meier survival analysis were used to assess the performance of signature. The association between the NS and osteosarcoma was analyzed via gene set enrichment analysis, gene set variation analysis and Pearson test. Single-cell data was used for further exploration. Among the genes that constituted the signature, the role of TNFRSF21 in osteosarcoma was unclear. Molecular experiments were used to explore TNFRSF21 function. RESULTS: Our data revealed that lower NS indicated more active necroptosis in osteosarcoma. Patients with lower NS had a better prognosis. PCA and ROC curves demonstrated NS was effective to predict prognosis. NS was negatively associated with immune infiltration levels and tumor microenvironment scores and positively associated with tumor purity and stemness index. Single-cell data showed necroptosis heterogeneity in osteosarcoma. The cell communication pattern of malignant cells with high NS was positively correlated with tumor progression. The expression of TNFRSF21 was down-regulated in osteosarcoma cell lines. Overexpression of TNFRSF21 inhibited proliferation and motility of osteosarcoma cells. Mechanically, TNFRSF21 upregulated the phosphorylation levels of RIPK1, RIPK3 and MLKL to promote necroptosis in osteosarcoma. CONCLUSIONS: The necroptosis prognostic signature and NS established in this study could be used as an independent prognostic factor, TNFRSF21 may be a necroptosis target in osteosarcoma therapy.

2.
Chemistry ; 30(17): e202303594, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38278765

RESUMEN

Graphene aerogel (GA) has important application potential as piezoresistive sensors due to its low density, high conductivity, high porosity, and good mechanical properties. However, the fabrication of GA-based sensors with good mechanical properties and excellent sensing performance is still challenging. Herein, liquid- metal-modified GAs (GA/LM) are proposed for the development of an excellent GA-based sensor. GA/LM with three-dimensional interconnected layered structure exhibits excellent compressive stress of 41 KPa and fast response time (<20 ms). While generally flexible GA composites cannot be compressed beyond 80 % strain without plastic deformation, GA/LM demonstrates a high compressive strength of 60 kPa under a strain of 90 %. A real-time pressure sensor was fabricated based on GA/LM-2 to monitor swallowing, pulse beating, finger, wrist and knee bending, and even plantar pressure during walking. These excellent features enable potential applications in health detection.

3.
Luminescence ; 39(1): e4677, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38286601

RESUMEN

There is a significant need to accurately measure doxycycline concentrations in view of the adverse effects of an overdose on human health. A fluorescence (FL) detection method was adopted and copper nanoclusters (CuNCs) were synthesized using chemical reduction technology. Based on FL quenching with doxycycline, the prepared CuNCs were used to explore a fluorescent nanoprobe for doxycycline detection. In an optimal sensing environment, this FL nanosensor was sensitive and selective in doxycycline sensing and displayed a linear relationship in the range 0.5-200 µM with a detection limit of 0.092 µΜ. A characterization test demonstrated that CuNCs offered active functional groups for identifying doxycycline using electrostatic interaction and hydrogen bonds. Static quenching and the inner filter effect (IFE) resulted in weakness in the FL of His@CuNCs with doxycycline with great efficiency. This suggested nanosensor was revealed to be a functional model for simple and rapid detection of doxycycline in real samples with very pleasing accuracy.


Asunto(s)
Cobre , Nanopartículas del Metal , Humanos , Cobre/química , Histidina , Doxiciclina , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Nanopartículas del Metal/química , Límite de Detección
4.
Am J Reprod Immunol ; 91(3): e13833, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38467595

RESUMEN

BACKGROUND: Endometritis is an inflammatory reaction of the lining of uterus, leading to the occurrence of infertility. Platelet rich plasma (PRP) has been proven to exhibit extremely effective for the treatment of endometrium-associated infertility, but the mechanism of its prevention for endometritis remains unclear. OBJECTIVE: The present study aimed to investigate the protective effect of PRP against endometritis induced by lipopolysaccharide (LPS) and elucidate the mechanism underlying these effects. METHODS: Mouse model of endometritis was established by intrauterine perfusion of LPS. PRP intrauterine infusion was administered at 24 h after LPS induction. After another 24 h, the uterine tissues were harvested to observe histopathological changes, production of proinflammatory cytokines, variation of the Toll-like receptor 4/nuclear factor κB (TLR4/NF-κB) signaling pathways, and validated the anti-inflammatory effect of PRP. The myeloperoxidase (MPO) activity and concentration of nitric oxide (NO) were determined using assay kit. Proinflammatory chemokines (tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6)) were measured by ELISA and Real-Time PCR. The activity of TLR4/NF-κB pathway in uterine tissues was measured by Western blotting. RESULTS: Hematoxylin-eosin staining (H&E) appeared that PRP remarkably relieved the impairment of uterine tissues. Detection of MPO activity and concentration of NO revealed that PRP treatment distinctly mitigated infiltration of inflammatory cells in mice with endometritis induced by LPS. PRP treatment significantly affected the expression of TNF-α, IL-1ß, and IL-6. PRP was also found to suppress LPS-induced activation of TLR4/NF-κB pathway. CONCLUSION: PRP effectively alleviates LPS-induced endometritis via restraining the signal pathway of TLR4/NF-κB. These findings provide a solid foundation for PRP as a potential therapeutic agent for endometritis.


Asunto(s)
Endometritis , Infertilidad , Plasma Rico en Plaquetas , Humanos , Femenino , Animales , Ratones , FN-kappa B/metabolismo , Endometritis/tratamiento farmacológico , Lipopolisacáridos/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Interleucina-6 , Receptor Toll-Like 4/metabolismo , Transducción de Señal , Interleucina-1beta/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacología , Óxido Nítrico/uso terapéutico , Plasma Rico en Plaquetas/metabolismo
5.
Sci Total Environ ; 945: 173996, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901600

RESUMEN

The continental weathering is a key process that controls calcium (Ca) transportation from the continental crust to the waters. To elucidate the behavior of Ca isotopes during carbonate weathering, the concentrations and δ44/40Ca (relative to NIST SRM 915a) of bulk saprolites, exchangeable, acid-leachable and residual phases of a weathering profile developed on the marine carbonates, Guangdong province, South China, were investigated. Upwards the profile, δ44/40Ca values of the bulk saprolites systematically decrease from 0.77 ± 0.12 ‰ to -0.44 ± 0.12 ‰, suggesting that significant Ca isotope fractionation occurred during chemical weathering. The exchangeable fractions have δ44/40Ca values higher than those of the bulk saprolites with Δ44/40Caexchangeable-saprolite varying from -0.01 ‰ to 0.73 ‰, suggesting that heavy isotopes are preferentially adsorbed onto the clays. The acid-leachable phases display a relatively narrow δ44/40Ca range from 0.52 ‰ to 0.74 ‰ with Ca fractions varying from 7.4 % to 100.3 %, potentially indicating that limited Ca isotopic fractionation occurs during the dissolution of primary carbonates. The residual Ca pool is strongly fractionated with δ44/40Ca ranging from 0.64 ± 0.08 ‰ to -0.98 ± 0.02 ‰, systematically lower than their bulk saprolites, perhaps indicating light Ca isotopes are preferentially incorporated into the clay lattices. Altogether, it seems that the Ca isotopic fractionation directions are opposite between clay structural incorporation and adsorption. Our study provides important insight of Ca behavior and Ca isotopic fractionation during chemical weathering, which is critical to shape Ca isotopic compositions of the upper continental crust and trace the global biogeochemical cycle of Ca.

6.
Biol Trace Elem Res ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177717

RESUMEN

Glucocorticoid-induced osteonecrosis of the femoral head (SONFH) is the most prevalent form of secondary osteonecrosis affecting the femoral head. Glucocorticoids can cause damage to both vascular endothelial cells and osteoblasts. Previous studies have demonstrated that silicon can improve the resistance of vascular endothelial cells to oxidative stress and positively impact bone health. However, the impact of silicon on SONFH has yet to be investigated. We examined the influence of ortho-silicic acid (OSA, Si(OH)4) on the apoptosis and proliferation of vascular endothelial cells after glucocorticoid induction. Additionally, we evaluated the expression of apoptosis-related genes such as cleaved-caspase-3, Bcl-2 and Bax. The impact of glucocorticoids and OSA on the function of vascular endothelial cells was evaluated through wound healing, transwell and angiogenesis assays. Osteogenic function was subsequently evaluated through alizarin red staining, alkaline phosphatase staining and expression levels of osteogenic genes like RUNX2 and ALP. Moreover, we investigated the potential role of OSA in vivo using the SONFH animal model. At concentrations below 100 µM, OSA exhibits no toxicity on vascular endothelial cells and effectively reverses glucocorticoid-induced apoptosis in these cells. OSA increases the resilience of vascular endothelial cells against oxidative stress and enhances osteoblast differentiation. Our study revealed that glucocorticoids activate endoplasmic reticulum stress, a process that mediates the apoptosis of vascular endothelial cells. OSA ameliorated the endoplasmic reticulum stress associated with glucocorticoids through the increased expression of p-Akt levels. In vivo, OSA treatment effectively improved SONFH by enhancing vascular endothelial cell function and promoting osteogenic differentiation. OSA counteracted the adverse effects of glucocorticoids both in vitro and in vivo, demonstrating a beneficial therapeutic effect on SONFH.

7.
Int J Biol Macromol ; 271(Pt 1): 132484, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821795

RESUMEN

Alginate oligosaccharides (AOS) are crucial carbohydrate-based biomaterial used in the synthesis of potential drugs and biological agents, but their antibacterial activities are not significant. In this study, AOS acylated derivatives were synthesized by grafting maleic anhydride (MA) onto AOS at varying ratios. Additionally, their inhibitory effects against Staphylococcus aureus were thoroughly investigated. Characterization of the AOS acylated derivatives (AOS-MA-x, where x = 1, 5, 10, and 20) was conducted using Fourier-transformed infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, and X-ray diffraction, which confirmed the successful synthesis of these derivatives. The bacteriostatic activity of the AOS-MA derivatives was assessed using growth curves and plate coating method, demonstrating significant antibacterial effects against S. aureus, as compared with AOS. Among these derivatives, AOS-MA-20 exhibited the most potent bacteriostatic activity and was selected for further investigation of its inhibitory mechanism. Scanning electron microscopy analysis revealed that treatment with AOS-MA-20 led to the lysis and rupture of S. aureus cells, expelling their intracellular contents. Moreover, AOS-MA-20 disrupted the integrity of cell wall and cell membrane, impacted ATPase activity, and inhibited the formation of biofilm to some extent, ultimately resulting in bacterial death. These findings lay a foundational framework for the development of environmentally friendly antimicrobial agents.


Asunto(s)
Alginatos , Antibacterianos , Pruebas de Sensibilidad Microbiana , Oligosacáridos , Staphylococcus aureus , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Alginatos/química , Alginatos/farmacología , Oligosacáridos/química , Oligosacáridos/farmacología , Oligosacáridos/síntesis química , Acilación , Biopelículas/efectos de los fármacos , Técnicas de Química Sintética
8.
Nanomaterials (Basel) ; 14(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38535695

RESUMEN

Nowadays, two of the biggest obstacles restricting the further development of methanol fuel cells are excessive cost and insufficient catalytic activity of platinum-based catalysts. Herein, platinum nanoparticle supported graphene aerogel (Pt/3DGA) was successfully synthesized by a one-step hydrothermal self-assembly method. The loose three-dimensional structure of the aerogel is stabilized by a simple one-step method, which not only reduces cost compared to the freeze-drying technology, but also optimizes the loading method of nanoparticles. The prepared Pt/3DGA catalyst has a three-dimensional porous structure with a highly cross-linked, large specific surface area, even dispersion of Pt NPs and good electrical conductivity. It is worth noting that its catalytic activity is 438.4 mA/mg with long-term stability, which is consistent with the projected benefits of anodic catalytic systems in methanol fuel cells.. Our study provides an applicable method for synthesizing nano metal particles/graphene-based composites.

9.
Metabolism ; 152: 155766, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145825

RESUMEN

BACKGROUND: Excessive hepatic glucose production is a hallmark that contributes to hyperglycemia in type 2 diabetes (T2D). The regulatory network governing this process remains incompletely understood. Here, we demonstrate that TOX3, a high-mobility group family member, acts as a major transcriptional driver for hepatic glucose production. METHODS: Tox3-overexpressed and knockout mice were constructed to explore its metabolic functions. Transcriptomic and chromatin-immunoprecipitation sequencing (ChIP-seq) were used to identify downstream targets of TOX3. Both FoxO1 silencing and inhibitor approaches were used to assess the contribution of FoxO1. TOX3 expression levels were examined in the livers of mice and human subjects. Finally, Tox3 was genetically manipulated in diet-induced obese mice to evaluate its therapeutic potential. RESULTS: Hepatic Tox3 overexpression activates the gluconeogenic program, resulting in hyperglycemia and insulin resistance in mice. Hepatocyte-specific Tox3 knockout suppresses gluconeogenesis and improves insulin sensitivity. Mechanistically, integrated hepatic transcriptomic and ChIP-seq analyses identify FoxO1 as a direct target of TOX3. TOX3 stimulates FoxO1 transcription by directly binding to and activating its promoter, whereas FoxO1 silencing abrogates TOX3-induced dysglycemia in mice. In human subjects, hepatic TOX3 expression shows a significant positive correlation with blood glucose levels under normoglycemic conditions, yet is repressed by high glucose during T2D. Importantly, hepatic Tox3 deficiency markedly protects against and ameliorates the hyperglycemia and glucose intolerance in diet-induced diabetic mice. CONCLUSIONS: Our findings establish TOX3 as a driver for excessive gluconeogenesis through activating hepatic FoxO1 transcription. TOX3 could serve as a promising target for preventing and treating hyperglycemia in T2D.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglucemia , Resistencia a la Insulina , Animales , Humanos , Ratones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Gluconeogénesis/genética , Glucosa/metabolismo , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL
10.
Front Oncol ; 13: 1231508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38328435

RESUMEN

Background: We attempted to develop a progression prediction model for local advanced rectal cancer(LARC) patients who received preoperative neoadjuvant chemoradiotherapy(NCRT) and operative treatment to identify high-risk patients in advance. Methods: Data from 272 LARC patients who received NCRT and total mesorectal excision(TME) from 2011 to 2018 at the Fourth Hospital of Hebei Medical University were collected. Data from 161 patients with rectal cancer (each sample with one target variable (progression) and 145 characteristic variables) were included. One Hot Encoding was applied to numerically represent some characteristics. The K-Nearest Neighbor (KNN) filling method was used to determine the missing values, and SmoteTomek comprehensive sampling was used to solve the data imbalance. Eventually, data from 135 patients with 45 characteristic clinical variables were obtained. Random forest, decision tree, support vector machine (SVM), and XGBoost were used to predict whether patients with rectal cancer will exhibit progression. LASSO regression was used to further filter the variables and narrow down the list of variables using a Venn diagram. Eventually, the prediction model was constructed by multivariate logistic regression, and the performance of the model was confirmed in the validation set. Results: Eventually, data from 135 patients including 45 clinical characteristic variables were included in the study. Data were randomly divided in an 8:2 ratio into a data set and a validation set, respectively. Area Under Curve (AUC) values of 0.72 for the decision tree, 0.97 for the random forest, 0.89 for SVM, and 0.94 for XGBoost were obtained from the data set. Similar results were obtained from the validation set. Twenty-three variables were obtained from LASSO regression, and eight variables were obtained by considering the intersection of the variables obtained using the previous four machine learning methods. Furthermore, a multivariate logistic regression model was constructed using the data set; the ROC indicated its good performance. The ROC curve also verified the good predictive performance in the validation set. Conclusions: We constructed a logistic regression model with good predictive performance, which allowed us to accurately predict whether patients who received NCRT and TME will exhibit disease progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA