Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 117(1): 33-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37731059

RESUMEN

Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.


Asunto(s)
Cromatina , Zea mays , Cromatina/genética , Zea mays/genética , Metilación de ADN , Ensamble y Desensamble de Cromatina/genética , Silenciador del Gen , Regulación de la Expresión Génica de las Plantas
2.
Bioinformatics ; 40(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38310330

RESUMEN

MOTIVATION: The advancement of long-read RNA sequencing technologies leads to a bright future for transcriptome analysis, in which clustering long reads according to their gene family of origin is of great importance. However, existing de novo clustering algorithms require plenty of computing resources. RESULTS: We developed a new algorithm GeLuster for clustering long RNA-seq reads. Based on our tests on one simulated dataset and nine real datasets, GeLuster exhibited superior performance. On the tested Nanopore datasets it ran 2.9-17.5 times as fast as the second-fastest method with less than one-seventh of memory consumption, while achieving higher clustering accuracy. And on the PacBio data, GeLuster also had a similar performance. It sets the stage for large-scale transcriptome study in future. AVAILABILITY AND IMPLEMENTATION: GeLuster is freely available at https://github.com/yutingsdu/GeLuster.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Perfilación de la Expresión Génica/métodos , Algoritmos , RNA-Seq , Análisis por Conglomerados , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos , Análisis de Secuencia de ADN/métodos
3.
Theor Appl Genet ; 137(8): 190, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39043952

RESUMEN

KEY MESSAGE: Extensive and comprehensive phenotypic data from a maize RIL population under both low- and normal-Pi treatments were used to conduct QTL mapping. Additionally, we integrated parental resequencing data from the RIL population, GWAS results, and transcriptome data to identify candidate genes associated with low-Pi stress in maize. Phosphorus (Pi) is one of the essential nutrients that greatly affect the maize yield. However, the genes underlying the QTL controlling maize low-Pi response remain largely unknown. In this study, a total of 38 traits at both seedling and maturity stages were evaluated under low- and normal-Pi conditions using a RIL population constructed from X178 (tolerant) and 9782 (sensitive), and most traits varied significantly between low- and normal-Pi treatments. Twenty-nine QTLs specific to low-Pi conditions were identified after excluding those with common intervals under both low- and normal-Pi conditions. Furthermore, 45 additional QTLs were identified based on the index value ((Trait_under_LowPi-Trait_under_NormalPi)/Trait_under_NormalPi) of each trait. These 74 QTLs collectively were classified as Pi-dependent QTLs. Additionally, 39 Pi-dependent QTLs were clustered in nine HotspotQTLs. The Pi-dependent QTL interval contained 19,613 unique genes, 6,999 of which exhibited sequence differences with non-synonymous mutation sites between X178 and 9782. Combined with in silico GWAS results, 277 consistent candidate genes were identified, with 124 genes located within the HotspotQTL intervals. The transcriptome analysis revealed that 21 genes, including the Pi transporter ZmPT7 and the strigolactones pathway-related gene ZmPDR1, exhibited consistent low-Pi stress response patterns across various maize inbred lines or tissues. It is noteworthy that ZmPDR1 in maize roots can be sharply up-regulated by low-Pi stress, suggesting its potential importance as a candidate gene for responding to low-Pi stress through the strigolactones pathway.


Asunto(s)
Mapeo Cromosómico , Fósforo , Sitios de Carácter Cuantitativo , Zea mays , Zea mays/genética , Zea mays/crecimiento & desarrollo , Mapeo Cromosómico/métodos , Fósforo/metabolismo , Fenotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Genes de Plantas , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Simulación por Computador
4.
Theor Appl Genet ; 137(7): 158, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864891

RESUMEN

Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.


Asunto(s)
Fósforo , Almidón , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Almidón/metabolismo , Fósforo/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Fenotipo
5.
Mol Cell Probes ; 75: 101959, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579915

RESUMEN

Human Toll-like receptor (TLR) family plays a crucial role in immunity and cancer progression. However, the specific role of human Toll-like receptor 4 (TLR4) in kidney renal clear cell carcinoma (KIRC) remains obscure. Thus, we used single-cell RNA sequencing (RNA-seq) and bulk RNA-seq data combined with in vitro studies to evaluate the expression and prognostic value of TLR4 in KIRC. In our study, we observed that TLR4 was over expressed in KIRC tissues compared to normal renal tissues. And the expression of TLR4 was higher in macrophages/monocytes than other cell types. Besides, there is a close association between TLR4 expression and immune cell infiltration (Neutrophils, Macrophages, T cells and B cells) in KIRC. Immunohistochemical staining also showed that TLR4 was overexpressed in inflammatory infiltration renal tissue compared with normal tissue. Meanwhile, high expression of TLR4 exhibited correlations with improved survival, lower tumor grade and stage. Interestingly, the protective significance of TLR4 only showed in female patients (HR = 0.37, P < 0.01), other than male patients (HR = 0.71, P = 0.08) with KIRC. Consistently, KIRC samples with lymph node metastasis showed lower expression of TLR4. Knockdown of TLR4 in 786-O cell line increased cell proliferation and clonogenic capacity. In summary, this study found TLR4 could inhibit the progression of kidney cancer and was associated with improved survival in KIRC. The overexpression of TLR4 in macrophages and the close association between TLR4 and immune cell infiltration also underline the critical role of TLR4 in building the immune microenvironment for kidney cancer. These results may offer insights into the mechanism and immune microenvironment of kidney cancer.


Asunto(s)
Carcinoma de Células Renales , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Receptor Toll-Like 4 , Femenino , Humanos , Masculino , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Macrófagos/metabolismo , Pronóstico , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética
6.
Skeletal Radiol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028463

RESUMEN

OBJECTIVES: This study utilizes [99mTc]-methylene diphosphate (MDP) single photon emission computed tomography (SPECT) images as a reference standard to evaluate whether the integration of radiomics features from computed tomography (CT) and machine learning algorithms can identify microscopic early bone metastases. Additionally, we also determine the optimal machine learning approach. MATERIALS AND METHODS: We retrospectively studied 63 patients with early bone metastasis from July 2020 to March 2023. The ITK-SNAP software was used to delineate early bone metastases and normal bone tissue in SPECT images of each patient, which were then registered onto CT images to outline the volume of interest (VOI). The VOI includes 63 early bone metastasis volumes and 63 normal bone tissue volumes. 126 VOIs were randomly distributed in a 7:3 ratio between the training and testing groups, and 944 radiomics features were extracted from every VOI. We established 20 machine learning models using 5 feature selection algorithms and 4 classification methods. Evaluate the performance of the model using the area under the receiver operating characteristic curve (AUC). RESULTS: Most machine learning models demonstrated outstanding discriminative capacity, with AUCs higher than 0.70. Notably, the K-Nearest Neighbors (KNN) classifier exhibited significant performance improvement compared to the other four classifiers. Specifically, the model constructed utilizing eXtreme Gradient Boosting (XGBoost) feature selection method integrated with KNN classifier achieved the maximum AUC, which is 0.989 in the training set and 0.975 in the testing set. CONCLUSIONS: Radiomics features integrated with machine learning methods can identify early bone metastases that are not visible on CT images. In our analysis, KNN is considered the optimal classification method.

7.
BMC Cancer ; 23(1): 1267, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129784

RESUMEN

Head and neck squamous carcinoma (HNSC) poses a significant public health challenge due to its substantial morbidity. Nevertheless, despite advances in current treatments, the prognosis for HNSC remains unsatisfactory. To address this, single-cell RNA sequencing (RNA-seq) and bulk RNA-seq data combined with in vitro studies were conducted to examine the role of MYO5A (Myosin VA) in HNSC. Our investigation revealed an overexpression of MYO5A in HNSC that promotes HNSC migration in vitro. Remarkably, knockdown of MYO5A suppressed vimentin expression. Furthermore, analyzing the TCGA database evidenced that MYO5A is a risk factor for human papillomavirus positive (HPV+) HNSC (HR = 0.81, P < 0.001). In high MYO5A expression HNSC, there was a low count of tumor infiltrating lymphocytes (TIL), including activated CD4+ T cells, CD8+ T cells, and B cells. Of note, CD4+ T cells and B cells were positively associated with improved HPV+ HNSC outcomes. Correlation analysis demonstrated a decreased level of immunostimulators in high MYO5A-expressing HNSC. Collectively, these findings suggest that MYO5A may promote HNSC migration through vimentin and involve itself in the process of immune infiltration in HNSC, advancing the understanding of the mechanisms and treatment of HNSC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Miosina Tipo V , Infecciones por Papillomavirus , Humanos , Vimentina/genética , Neoplasias de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Procesos Neoplásicos , Pronóstico , Linfocitos Infiltrantes de Tumor , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética
8.
Langmuir ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37862270

RESUMEN

The formation of highly stable water-in-oil emulsions results in complications in both upstream and downstream processing. Emulsion stability in these systems has been connected to the adsorption of surface-active asphaltenes that are assumed to form a rigidified film at the oil/water (o/w) interface. Full characterization of this behavior is needed to allow for engineered solutions for enhanced oil recovery. Interfacial properties, such as surface pressure and interfacial elasticity, are implicated in the stabilizing mechanism for these observed films. Asphaltenes are known to be interfacially active in both good solvents (aromatics) and poor solvents (high ratio of aliphatic to aromatic). However, due to inherent complexities present in asphaltene studies, the details of the mechanical properties of the interface remain poorly understood. Despite the widely accepted perception that asphaltenes form persistent rigid films at fluid-fluid interfaces, the connection between bulk solution properties and interfacial mechanics has not been resolved. Here, the effects of solvent quality on the interfacial properties of asphaltene dispersions are determined by using a well-defined asphaltene/solvent system. Interfacial rigidity is observed only under poor solvent conditions, while the good solvent system remains fluid-like. The interfacial rheology under good and poor solvent conditions is measured simultaneously with surface pressure measurements to track interfacial development. It is shown that surface pressure and dilatational modulus measurements are not indicators of whether an interface demonstrates rigid behavior under large compressions. Finally, conditions required for asphaltene-coated interfaces to exhibit the mechanical behavior associated with a rigidified interface are defined. This work provides a framework for quantifying the impact of the aggregation state of asphaltenes on the stability and mechanics at the o/w interface.

9.
Inorg Chem ; 62(25): 9844-9853, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37314819

RESUMEN

The key of catalytic oxidation technology is to develop a stable catalyst with high activity. It is still a serious challenge to achieve high conversion efficiency of acetone with an integral catalyst at low temperature. In this study, the SmMn2O5 catalyst after acid etching was used as the support, and the manganese mullite composite catalyst was prepared by loading Ag and CeO2 nanoparticles on its surface. By means of SEM, TEM, XRD, N2-BET, XPS, EPR, H2-TPR, O2-TPD, NH3-TPD, DRIFT, and other characterization methods, the related factors and mechanism analysis of acetone degradation activity of the composite catalyst were discussed. Among them, the CeO2-SmMn2O5-H catalyst has the best catalytic activity at 123 and 185 °C for T50 and T100, respectively, and shows excellent water and thermal resistance and stability. In essence, the surface and lattice defects of highly exposed Mn sites were formed by acid etching, and the dispersibility of Ag and CeO2 nanoparticles was optimized. Highly dispersed Ag and CeO2 nanoparticles have a highly synergistic effect with the support SmMn2O5, and the reactive oxygen species provided by CeO2 and the electron transfer brought by Ag further promote the decomposition of acetone on the carrier SMO-H. In the field of catalytic degradation of acetone, a new catalyst modification method of high-quality active noble metals and transition metal oxides supported by acid-etched SmMn2O5 has been developed.

10.
Environ Sci Technol ; 56(13): 9220-9236, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35580211

RESUMEN

Volatile organic compounds (VOCs) are atmospheric pollutants that have been of concern for researchers in recent years because they are toxic, difficult to remove, and widely sourced and easily cause damage to the environment and human body. Most scholars use low-temperature plasma biological treatment, catalytic oxidation, adsorption, condensation, and recovery techniques to treat then effectively. Among them, catalytic oxidation technology has the advantages of a high catalytic efficiency, low energy consumption, high safety factor, high treatment efficiency, and less secondary pollution; it is currently widely used for VOC degradation technology. In this paper, the catalytic oxidation technology for the degradation of multiple types of VOCs as well as the development of a single metal oxide catalyst have been briefly introduced. We also focus on the research progress of composite metal oxide catalysts for the removal of VOCs by comparing and analyzing the metal component ratio, preparation method, and types of precursors and the catalysts' influence on the catalytic performance. In addition, the reason for catalyst deactivation and a correlation between the chemical state of the catalyst and the electron distribution are discussed. Development of a composite metal oxide catalyst for the catalytic oxidation of VOCs has been proposed.


Asunto(s)
Compuestos Orgánicos Volátiles , Catálisis , Humanos , Metales/química , Oxidación-Reducción , Óxidos/química , Compuestos Orgánicos Volátiles/química
11.
BMC Oral Health ; 22(1): 504, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384556

RESUMEN

BACKGROUND: Guided endodontics is a successful technique that has been gradually applied to endodontic therapy in recent years without being affected by the operator's experience. However, the guided bur produces excessive heat during continuous rotation and friction with root canal walls, it is not clear whether the degree of temperature increase may lead to the periodontal ligament and alveolar bone damage. METHODS: A total of 58 teeth were used, of which 40 teeth were not grouped, all used to evaluate the accuracy. 40 single-rooted premolars were scanned using CBCT and an intra-oral scanner, and 3D-printed guided plates were made with the pre-designed access. A custom-made guided bur was used to prepare the access cavities. The postoperative CBCT data and pre-designed pathways were matched to evaluate the deviation between the planned and virtual paths. The other 18 teeth were randomly divided into three groups (ET20 and ProTaper F3 as the control group, guided endodontics as the test group), with 6 teeth in each group. The temperature changes on the root surfaces were inspected with a thermocouple thermometer. RESULTS: The average deviation on the tip and the base of the bur was 0.30 mm and 0.28 mm (mesial/distal), and 0.28 mm and 0.25 mm (buccal/lingual). The average angle deviation was 3.62°. The mean root surface temperature rise of the guided endodontics group was the lowest (5.07 °C) (P < 0.05). CONCLUSIONS: The access cavity preparation performed with guided endodontics has feasible accuracy and low-temperature rise on the root surfaces. Due to the limitations of the study, whether it has high reliability and safety in clinical applications needs to be further studied in vivo.


Asunto(s)
Endodoncia , Humanos , Temperatura , Reproducibilidad de los Resultados , Preparación de la Cavidad Dental/métodos , Tratamiento del Conducto Radicular
12.
Oral Dis ; 24(5): 856-863, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29292572

RESUMEN

OBJECTIVE: Taste dysfunction is one of the most common complications following radiotherapy, which leads to decreased appetite and life quality of patients suffering from head and neck cancer. The aim of this study was to investigate the role of checkpoint kinase 2 (Chk2) deficiency in irradiation-induced taste dysfunction. MATERIALS AND METHODS: Alterations in oxidative stress, DNA damage, and potential signaling pathway were compared between Chk2-deficient (Chk2-/- ) mice and their wild-type (WT) littermates pre-irradiation and 7 and 30 days postirradiation by biochemistry and immunohistochemistry. RESULTS: Chk2-/- mice showed less loss of type II and type III taste cells, lower expression of p53, caspase-3, and cleaved caspase-3, and lower apoptosis levels. However, no significant differences in H2 O2 and MDA concentrations, T-SOD and GSH-Px activities, and expression of SOD1, SOD2, and 8-OHdG were detected in the taste buds of Chk2-/- mice as compared to those of WT mice. CONCLUSION: Chk2 deficiency downregulated the expression of p53 and inhibited cellular apoptosis, partly contributing to the radioprotective effect on taste cells, but did not alter oxidative stress levels, antioxidant ability, and oxidative DNA damage in taste buds.


Asunto(s)
Apoptosis , Quinasa de Punto de Control 2/deficiencia , Trastornos del Gusto/etiología , Proteína p53 Supresora de Tumor/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina , Animales , Caspasa 3/metabolismo , Quinasa de Punto de Control 2/genética , Daño del ADN , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Femenino , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones Noqueados , Radioterapia/efectos adversos , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo , Papilas Gustativas/metabolismo , Papilas Gustativas/patología , Trastornos del Gusto/genética , Trastornos del Gusto/metabolismo , Trastornos del Gusto/patología
13.
J Mech Behav Biomed Mater ; 152: 106462, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38346366

RESUMEN

OBJECTIVES: To study the stress distribution and bonding performance in posterior occlusal veneers and tooth bodies under different preparation forms and materials. METHODS: An isolated lower right first molar was prepared with non-retention type (type A), cavity-retained type (type B), and encircling-retention type (type C) forms. MicroCT images of the tooth were obtained and digitally converted into three-dimensional solid models. Three-dimensional models of veneers for the three abutment teeth were designed, fabricated, and divided into nine models (AEM, ALU, AVE, BEM, BLU, BVE, CEM, CLU, and CVE) according to the material used (E.max CAD [EM], Lava Ultimate [LU] and Vita Enamic [VE]). Three-dimensional finite element stress analysis was performed by applying vertical and oblique forces (200 N) to simulate chewing loads using ABAQUS. Finally, an adhesive stiffness degradation diagram was obtained using the rotatory dislocation simulation method. RESULTS: The BEM model had the largest equivalent stress extreme value (160.50 MP A) when a vertical load was applied to the veneers, while there was no significant difference when it was applied to dental tissues. The equivalent stress extreme values of each part under an oblique load were significantly greater than those under a vertical load. The AEM model had the largest values when the loads were applied to the veneers (350.60 MP A) and the dental tissues (40.13 MP A). The equivalent stress extreme values of the veneers were ranked as LU < VE < EM for different materials, and LU > VE > EM for dental tissues. Bonding performance results were C > B ≈ A and LU > VE > EM. CONCLUSIONS: The cavity-retained type better protected the veneers and dental tissues than the non-retention and encircling-retention types under lateral forces. E.max CAD material, with a high elastic modulus, reduced the stress transmitted to the remaining dental tissues. Lava Ultimate exhibited the best bonding performance.


Asunto(s)
Diente Molar , Análisis de Elementos Finitos , Simulación por Computador , Módulo de Elasticidad
14.
Materials (Basel) ; 17(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38998398

RESUMEN

Due to their excellent mechanical properties, the carbon fiber-reinforced polymer composites (CFRPs) of thermoplastic resins are widely used, and an accurate constitutive model plays a pivotal role in structural design and service safety. A two-parameter three-dimensional (3D) plastic potential was obtained by considering both the deviatoric deformation and the dilatation deformation associated with hydrostatic stress. The Langmuir function was first adopted to model the plastic hardening behavior of composites. The two-parameter 3D plastic potential, connected to the Langmuir function of plastic hardening, was thus proposed to model the constitutive behavior of the CFRPs of thermoplastic resins. Also, T700/PEEK specimens with different off-axis angles were subjected to tensile loading to obtain the corresponding fracture surface angles of specimens and the load-displacement curves. The two unknown plastic parameters in the proposed 3D plastic potential were obtained by using the quasi-Newton algorithm programmed in MATLAB, and the unknown hardening parameters in the Langmuir function were determined by fitting the effective stress-plastic strain curve in different off-axis angles. Meanwhile, the user material subroutine VUMAT, following the proposed constitutive model, was developed in terms of the maximum stress criterion for fiber failure and the LaRC05 criterion for matrix failure to simulate the 3D elastoplastic damage behavior of T700/PEEK. Finally, comparisons between the experimental tests and the numerical analysis were made, and a fairly good agreement was found, which validated the correctness of the proposed constitutive model in this work.

15.
Med Phys ; 51(4): 2578-2588, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37966123

RESUMEN

BACKGROUND: Bone metastasis is a common event in lung cancer progression. Early diagnosis of lung malignant tumor with bone metastasis is crucial for selecting effective treatment strategies. However, 14.3% of patients are still difficult to diagnose after SPECT/CT examination. PURPOSE: Machine learning analysis of [99mTc]-methylene diphosphate (99mTc-MDP) SPECT/CT scans to distinguish bone metastases from benign bone lesions in patients with lung cancer. METHODS: One hundred forty-one patients (69 with bone metastases and 72 with benign bone lesions) were randomly assigned to the training group or testing group in a 7:3 ratio. Lesions were manually delineated using ITK-SNAP, and 944 radiomics features were extracted from SPECT and CT images. The least absolute shrinkage and selection operator (LASSO) regression was used to select the radiomics features in the training set, and the single/bimodal radiomics models were established based on support vector machine (SVM). To further optimize the model, the best bimodal radiomics features were combined with clinical features to establish an integrated Radiomics-clinical model. The diagnostic performance of models was evaluated using receiver operating characteristic (ROC) curve and confusion matrix, and performance differences between models were evaluated using the Delong test. RESULTS: The optimal radiomics model comprised of structural modality (CT) and metabolic modality (SPECT), with an area under curve (AUC) of 0.919 and 0.907 for the training and testing set, respectively. The integrated model, which combined SPECT, CT, and two clinical features, exhibited satisfactory differentiation in the training and testing set, with AUC of 0.939 and 0.925, respectively. CONCLUSIONS: The machine learning can effectively differentiate between bone metastases and benign bone lesions. The Radiomics-clinical integrated model demonstrated the best performance.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Humanos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único , Aprendizaje Automático , Estudios Retrospectivos
16.
Sci Rep ; 14(1): 9338, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654120

RESUMEN

Induced resistance is considered an eco-friendly disease control strategy, which can enhance plant disease resistance by inducing the plant's immune system to activate the defense response. In recent years, studies have shown that lactic acid can play a role in plant defense against biological stress; however, whether lactic acid can improve tobacco resistance to Phytophthora nicotianae, and its molecular mechanism remains unclear. In our study, the mycelial growth and sporangium production of P. nicotianae were inhibited by lactic acid in vitro in a dose-dependent manner. Application of lactic acid could reduce the disease index, and the contents of total phenol, salicylic acid (SA), jasmonic acid (JA), lignin and H2O2, catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased. To explore this lactic acid-induced protective mechanism for tobacco disease resistance, RNA-Seq analysis was used. Lactic acid enhances tobacco disease resistance by activating Ca2+, reactive oxygen species (ROS) signal transduction, regulating antioxidant enzymes, SA, JA, abscisic acid (ABA) and indole-3-acetic acid (IAA) signaling pathways, and up-regulating flavonoid biosynthesis-related genes. This study demonstrated that lactic acid might play a role in inducing resistance to tobacco black shank disease; the mechanism by which lactic acid induces disease resistance includes direct antifungal activity and inducing the host to produce direct and primed defenses. In conclusion, this study provided a theoretical basis for lactic acid-induced resistance and a new perspective for preventing and treating tobacco black shank disease.


Asunto(s)
Resistencia a la Enfermedad , Ácido Láctico , Nicotiana , Oxilipinas , Phytophthora , Enfermedades de las Plantas , Phytophthora/patogenicidad , Phytophthora/fisiología , Nicotiana/microbiología , Nicotiana/inmunología , Nicotiana/genética , Nicotiana/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/prevención & control , Oxilipinas/metabolismo , Ácido Láctico/metabolismo , Ciclopentanos/metabolismo , Ácido Salicílico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Transducción de Señal , Peróxido de Hidrógeno/metabolismo
17.
Adv Drug Deliv Rev ; 209: 115301, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38570141

RESUMEN

Subcutaneous (SC) injections can be associated with local pain and discomfort that is subjective and may affect treatment adherence and overall patient experience. With innovations increasingly focused on finding ways to deliver higher doses and volumes (≥2 mL), there is a need to better understand the multiple intertwined factors that influence pain upon SC injection. As a priority for the SC Drug Development & Delivery Consortium, this manuscript provides a comprehensive review of known attributes from published literature that contribute to pain/discomfort upon SC injection from three perspectives: (1) device and delivery factors that cause physical pain, (2) formulation factors that trigger pain responses, and (3) human factors impacting pain perception. Leveraging the Consortium's collective expertise, we provide an assessment of the comparative and interdependent factors likely to impact SC injection pain. In addition, we offer expert insights and future perspectives to fill identified gaps in knowledge to help advance the development of patient-centric and well tolerated high-dose/high-volume SC drug delivery solutions.


Asunto(s)
Dolor , Humanos , Inyecciones Subcutáneas , Dolor/tratamiento farmacológico , Sistemas de Liberación de Medicamentos
18.
Materials (Basel) ; 16(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37445100

RESUMEN

In order to study the effect of TiB2 particles on the mechanical properties of TiB2/6061Al composites, a series of 3D TiB2/6061Al representative volume elements (RVEs) were established based on SEM photos. This model took into account the ductile damage of the matrix and the traction separation behavior of the interface, and the linear damage evolution law was introduced to characterize stiffness degradation in the matrix elements. Mixed boundary conditions were used in the RVE tensile experiments, and the accuracy of the predicted result was verified by the agreement of the experimental stress-strain curve. The results showed that the addition of TiB2 particles can effectively promote the load-bearing capacity of the composite, but elongation is reduced. When the weight fraction of TiB2 increased from 2.5% to 12.5%, the elastic modulus, yield strength, and tensile strength increased by 8%, 10.37%, and 11.55%, respectively, while the elongation decreased by 10%. The clustering rate of the TiB2 particles is also an important factor affecting the toughness of the composites. With an increase in the clustering rate of TiB2 particles from 20% to 80%, the load-bearing capacity of the composites did not improve, and the elongation of the composites was reduced by 8%. Moreover, the high-strain region provides a path for rapid crack propagation, and particle spacing is a crucial factor that affects the stress field.

19.
Biomater Res ; 27(1): 29, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061706

RESUMEN

BACKGROUND: The activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) signaling pathway has attracted great attention for its ability to up-regulate innate immune response and thus enhance cancer immunotherapy. However, many STING agonists limit the further advancement of immunotherapy due to weak tumor responsiveness or low activation efficiency. The responsive and effective activation of cGAS-STING signaling in tumors is a highly challenging process. METHODS: In this study, a manganese-based nanoplatform (MPCZ NPs) was constructed that could responsively and efficiently generate more manganese ions (Mn2+) and reactive oxygen species (ROS) to activate cGAS-STING signaling pathway. Briefly, manganese dioxide (MnO2) was loaded with zinc protoporphyrin IX (ZPP) molecule and coated by polydopamine (PDA) embedded with NH4HCO3 to obtain MPCZ NPs. Additionally, MPCZ NPs were evaluated in vitro and in vivo for their antitumor effects by methyl thiazolyl tetrazolium (MTT) assay and TUNEL assays, respectively. RESULTS: In this system, tumor responsiveness was achieved by exogenous (laser irradiation) and endogenous (high levels GSH) stimulation, which triggered the collapse or degradation of PDA and MnO2. Moreover, the release of Mn2+ augmented the cGAS-STING signaling pathway and enhanced the conversion of hydrogen peroxide (H2O2) to hydroxyl radical (·OH) under NIR laser irradiation. Furthermore, the release of ZPP and the elimination of GSH by MPCZ NPs inhibited HO-1 activity and prevented ROS consumption, respectively. CONCLUSIONS: This adopted open source and reduce expenditure strategy to effectively generate more ROS and Mn2+ to responsively activate cGAS-STING signaling pathway, providing a new strategy for improving immunotherapy.

20.
Polymers (Basel) ; 15(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111984

RESUMEN

Metal-organic frameworks (MOFs) have been previously shown as an emerging modified class of epoxy resin. In this work, we report a simple strategy for preventing zeolitic imidazolate framework (ZIF-8) nanoparticles from agglomerating in epoxy resin (EP). Branched polyethylenimine grafted ZIF-8 in ionic liquid (BPEI-ZIF-8) nanofluid with good dispersion was prepared successfully using an ionic liquid as both the dispersant and curing agent. Results indicated that the thermogravimetric curve of the composite material had no noticeable change with increasing BPEI-ZIF-8/IL content. The glass transition temperature (Tg) of the epoxy composite was reduced with the addition of BPEI-ZIF-8/IL. The addition of 2 wt% BPEI-ZIF-8/IL into EP effectively improved the flexural strength to about 21.7%, and the inclusion of 0.5 wt% of BPEI-ZIF-8/IL EP composites increased the impact strength by about 83% compared to pure EP. The effect of adding BPEI-ZIF-8/IL on the Tg of epoxy resin was explored, and its toughening mechanism was analyzed in combination with SEM images showing fractures in the EP composites. Moreover, the damping and dielectric properties of the composites were improved by adding BPEI-ZIF-8/IL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA