Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 389(13): 1191-1202, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37754284

RESUMEN

BACKGROUND: Although the clinical efficacy of antimalarial artemisinin-based combination therapies in Africa remains high, the recent emergence of partial resistance to artemisinin in Plasmodium falciparum on the continent is troubling, given the lack of alternative treatments. METHODS: In this study, we used data from drug-efficacy studies conducted between 2016 and 2019 that evaluated 3-day courses of artemisinin-based combination therapy (artesunate-amodiaquine or artemether-lumefantrine) for uncomplicated malaria in Eritrea to estimate the percentage of patients with day-3 positivity (i.e., persistent P. falciparum parasitemia 3 days after the initiation of therapy). We also assayed parasites for mutations in Pfkelch13 as predictive markers of partial resistance to artemisinin and screened for deletions in hrp2 and hrp3 that result in variable performance of histidine rich protein 2 (HRP2)-based rapid diagnostic tests for malaria. RESULTS: We noted an increase in the percentage of patients with day-3 positivity from 0.4% (1 of 273) in 2016 to 1.9% (4 of 209) in 2017 and 4.2% (15 of 359) in 2019. An increase was also noted in the prevalence of the Pfkelch13 R622I mutation, which was detected in 109 of 818 isolates before treatment, from 8.6% (24 of 278) in 2016 to 21.0% (69 of 329) in 2019. The odds of day-3 positivity increased by a factor of 6.2 (95% confidence interval, 2.5 to 15.5) among the patients with Pfkelch13 622I variant parasites. Partial resistance to artemisinin, as defined by the World Health Organization, was observed in Eritrea. More than 5% of the patients younger than 15 years of age with day-3 positivity also had parasites that carried Pfkelch13 R622I. In vitro, the R622I mutation conferred a low level of resistance to artemisinin when edited into NF54 and Dd2 parasite lines. Deletions in both hrp2 and hrp3 were identified in 16.9% of the parasites that carried the Pfkelch13 R622I mutation, which made them potentially undetectable by HRP2-based rapid diagnostic tests. CONCLUSIONS: The emergence and spread of P. falciparum lineages with both Pfkelch13-mediated partial resistance to artemisinin and deletions in hrp2 and hrp3 in Eritrea threaten to compromise regional malaria control and elimination campaigns. (Funded by the Bill and Melinda Gates Foundation and others; Australian New Zealand Clinical Trials Registry numbers, ACTRN12618001223224, ACTRN12618000353291, and ACTRN12619000859189.).


Asunto(s)
Antimaláricos , Combinación Arteméter y Lumefantrina , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Humanos , Amodiaquina/administración & dosificación , Amodiaquina/farmacología , Amodiaquina/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/farmacología , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/administración & dosificación , Artemisininas/farmacología , Artemisininas/uso terapéutico , Resistencia a Medicamentos/genética , Eritrea/epidemiología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Prevalencia
2.
PLoS Pathog ; 20(4): e1012154, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603707

RESUMEN

Candida albicans chronically colonizes the respiratory tract of patients with Cystic Fibrosis (CF). It competes with CF-associated pathogens (e.g. Pseudomonas aeruginosa) and contributes to disease severity. We hypothesize that C. albicans undergoes specific adaptation mechanisms that explain its persistence in the CF lung environment. To identify the underlying genetic and phenotypic determinants, we serially recovered 146 C. albicans clinical isolates over a period of 30 months from the sputum of 25 antifungal-naive CF patients. Multilocus sequence typing analyses revealed that most patients were individually colonized with genetically close strains, facilitating comparative analyses between serial isolates. We strikingly observed differential ability to filament and form monospecies and dual-species biofilms with P. aeruginosa among 18 serial isolates sharing the same diploid sequence type, recovered within one year from a pediatric patient. Whole genome sequencing revealed that their genomes were highly heterozygous and similar to each other, displaying a highly clonal subpopulation structure. Data mining identified 34 non-synonymous heterozygous SNPs in 19 open reading frames differentiating the hyperfilamentous and strong biofilm-former strains from the remaining isolates. Among these, we detected a glycine-to-glutamate substitution at position 299 (G299E) in the deduced amino acid sequence of the zinc cluster transcription factor ROB1 (ROB1G299E), encoding a major regulator of filamentous growth and biofilm formation. Introduction of the G299E heterozygous mutation in a co-isolated weak biofilm-former CF strain was sufficient to confer hyperfilamentous growth, increased expression of hyphal-specific genes, increased monospecies biofilm formation and increased survival in dual-species biofilms formed with P. aeruginosa, indicating that ROB1G299E is a gain-of-function mutation. Disruption of ROB1 in a hyperfilamentous isolate carrying the ROB1G299E allele abolished hyperfilamentation and biofilm formation. Our study links a single heterozygous mutation to the ability of C. albicans to better survive during the interaction with other CF-associated microbes and illuminates how adaptive traits emerge in microbial pathogens to persistently colonize and/or infect the CF-patient airways.


Asunto(s)
Biopelículas , Candida albicans , Fibrosis Quística , Proteínas Fúngicas , Factores de Transcripción , Fibrosis Quística/microbiología , Candida albicans/genética , Candida albicans/metabolismo , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutación con Ganancia de Función , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pulmón/microbiología , Candidiasis/microbiología , Adaptación Fisiológica
3.
J Virol ; 98(5): e0169323, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38563763

RESUMEN

In the early COVID-19 pandemic with urgent need for countermeasures, we aimed at developing a replicating viral vaccine using the highly efficacious measles vaccine as vector, a promising technology with prior clinical proof of concept. Building on our successful pre-clinical development of a measles virus (MV)-based vaccine candidate against the related SARS-CoV, we evaluated several recombinant MV expressing codon-optimized SARS-CoV-2 spike glycoprotein. Candidate V591 expressing a prefusion-stabilized spike through introduction of two proline residues in HR1 hinge loop, together with deleted S1/S2 furin cleavage site and additional inactivation of the endoplasmic reticulum retrieval signal, was the most potent in eliciting neutralizing antibodies in mice. After single immunization, V591 induced similar neutralization titers as observed in sera of convalescent patients. The cellular immune response was confirmed to be Th1 skewed. V591 conferred long-lasting protection against SARS-CoV-2 challenge in a murine model with marked decrease in viral RNA load, absence of detectable infectious virus loads, and reduced lesions in the lungs. V591 was furthermore efficacious in an established non-human primate model of disease (see companion article [S. Nambulli, N. Escriou, L. J. Rennick, M. J. Demers, N. L. Tilston-Lunel et al., J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23]). Thus, V591 was taken forward into phase I/II clinical trials in August 2020. Unexpected low immunogenicity in humans (O. Launay, C. Artaud, M. Lachâtre, M. Ait-Ahmed, J. Klein et al., eBioMedicine 75:103810, 2022, https://doi.org/10.1016/j.ebiom.2021.103810) revealed that the underlying mechanisms for resistance or sensitivity to pre-existing anti-measles immunity are not yet understood. Different hypotheses are discussed here, which will be important to investigate for further development of the measles-vectored vaccine platform.IMPORTANCESARS-CoV-2 emerged at the end of 2019 and rapidly spread worldwide causing the COVID-19 pandemic that urgently called for vaccines. We developed a vaccine candidate using the highly efficacious measles vaccine as vector, a technology which has proved highly promising in clinical trials for other pathogens. We report here and in the companion article by Nambulli et al. (J Virol 98:e01762-23, 2024, https://doi.org/10.1128/jvi.01762-23) the design, selection, and preclinical efficacy of the V591 vaccine candidate that was moved into clinical development in August 2020, 7 months after the identification of SARS-CoV-2 in Wuhan. These unique in-human trials of a measles vector-based COVID-19 vaccine revealed insufficient immunogenicity, which may be the consequence of previous exposure to the pediatric measles vaccine. The three studies together in mice, primates, and humans provide a unique insight into the measles-vectored vaccine platform, raising potential limitations of surrogate preclinical models and calling for further refinement of the platform.


Asunto(s)
Vacunas contra la COVID-19 , Virus del Sarampión , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Femenino , Humanos , Ratones , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Modelos Animales de Enfermedad , Vectores Genéticos , Vacuna Antisarampión/inmunología , Vacuna Antisarampión/genética , Virus del Sarampión/inmunología , Virus del Sarampión/genética , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
4.
Malar J ; 23(1): 92, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570791

RESUMEN

BACKGROUND: Artemether-lumefantrine (AL) and dihydroartemisinin-piperaquine (DP) are the currently recommended first- and second-line therapies for uncomplicated Plasmodium falciparum infections in Togo. This study assessed the efficacy of these combinations, the proportion of Day3-positive patients (D3 +), the proportion of molecular markers associated with P. falciparum resistance to anti-malarial drugs, and the variable performance of HRP2-based malaria rapid diagnostic tests (RDTs). METHODS: A single arm prospective study evaluating the efficacy of AL and DP was conducted at two sites (Kouvé and Anié) from September 2021 to January 2022. Eligible children were enrolled, randomly assigned to treatment at each site and followed up for 42 days after treatment initiation. The primary endpoint was polymerase chain reaction (PCR) adjusted adequate clinical and parasitological response (ACPR). At day 0, samples were analysed for mutations in the Pfkelch13, Pfcrt, Pfmdr-1, dhfr, dhps, and deletions in the hrp2/hrp3 genes. RESULTS: A total of 179 and 178 children were included in the AL and DP groups, respectively. After PCR correction, cure rates of patients treated with AL were 97.5% (91.4-99.7) at day 28 in Kouvé and 98.6% (92.4-100) in Anié, whereas 96.4% (CI 95%: 89.1-98.8) and 97.3% (CI 95%: 89.5-99.3) were observed at day 42 in Kouvé and Anié, respectively. The cure rates of patients treated with DP at day 42 were 98.9% (CI 95%: 92.1-99.8) in Kouvé and 100% in Anié. The proportion of patients with parasites on day 3 (D3 +) was 8.5% in AL and 2.6% in DP groups in Anié and 4.3% in AL and 2.1% DP groups in Kouvé. Of the 357 day 0 samples, 99.2% carried the Pfkelch13 wild-type allele. Two isolates carried nonsynonymous mutations not known to be associated with artemisinin partial resistance (ART-R) (A578S and A557S). Most samples carried the Pfcrt wild-type allele (97.2%). The most common Pfmdr-1 allele was the single mutant 184F (75.6%). Among dhfr/dhps mutations, the quintuple mutant haplotype N51I/C59R/S108N + 437G/540E, which is responsible for SP treatment failure in adults and children, was not detected. Single deletions in hrp2 and hrp3 genes were detected in 1/357 (0.3%) and 1/357 (0.3%), respectively. Dual hrp2/hrp3 deletions, which could affect the performances of HRP2-based RDTs, were not observed. CONCLUSION: The results of this study confirm that the AL and DP treatments are highly effective. The absence of the validated Pfkelch13 mutants in the study areas suggests the absence of ART -R, although a significant proportion of D3 + cases were found. The absence of dhfr/dhps quintuple or sextuple mutants (quintuple + 581G) supports the continued use of SP for IPTp during pregnancy and in combination with amodiaquine for seasonal malaria chemoprevention. TRIAL REGISTRATION: ACTRN12623000344695.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Piperazinas , Quinolinas , Niño , Adulto , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Combinación Arteméter y Lumefantrina/farmacología , Prevalencia , Togo/epidemiología , Estudios Prospectivos , Arteméter/uso terapéutico , Quinolinas/farmacología , Quinolinas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Malaria/tratamiento farmacológico , Resistencia a Medicamentos , Tetrahidrofolato Deshidrogenasa/genética , Biomarcadores , Combinación de Medicamentos , Plasmodium falciparum/genética
5.
Mol Ecol ; 32(18): 5140-5155, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37540190

RESUMEN

In epidemiology, endemicity characterizes sustained pathogen circulation in a geographical area, which involves a circulation that is not being maintained by external introductions. Because it could potentially shape the design of public health interventions, there is an interest in fully uncovering the endemic pattern of a disease. Here, we use a phylogeographic approach to investigate the endemic signature of rabies virus (RABV) circulation in Cambodia. Cambodia is located in one of the most affected regions by rabies in the world, but RABV circulation between and within Southeast Asian countries remains understudied. Our analyses are based on a new comprehensive data set of 199 RABV genomes collected between 2014 and 2017 as well as previously published Southeast Asian RABV sequences. We show that most Cambodian sequences belong to a distinct clade that has been circulating almost exclusively in Cambodia. Our results thus point towards rabies circulation in Cambodia that does not rely on external introductions. We further characterize within-Cambodia RABV circulation by estimating lineage dispersal metrics that appear to be similar to other settings, and by performing landscape phylogeographic analyses to investigate environmental factors impacting the dispersal dynamic of viral lineages. The latter analyses do not lead to the identification of environmental variables that would be associated with the heterogeneity of viral lineage dispersal velocities, which calls for a better understanding of local dog ecology and further investigations of the potential drivers of RABV spread in the region. Overall, our study illustrates how phylogeographic investigations can be performed to assess and characterize viral endemicity in a context of relatively limited data.


Asunto(s)
Virus de la Rabia , Rabia , Animales , Perros , Rabia/epidemiología , Rabia/veterinaria , Cambodia/epidemiología , Virus de la Rabia/genética , Filogeografía , Análisis de Secuencia de ADN , Filogenia
6.
Malar J ; 21(1): 134, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477399

RESUMEN

BACKGROUND: Artesunate-amodiaquine (ASAQ) and Artemether-lumefantrine (AL) are the recommended treatment for uncomplicated Plasmodium falciparum malaria in Liberia. Intermittent preventive treatment with sulfadoxine/pyrimethamine is also recommended for pregnant women. The therapeutic efficacy of Artesunate-amodiaquine and Artemether-lumefantrine, and the frequency of molecular markers associated with anti-malarial drug resistance were investigated. METHODS: The therapeutic efficacy of ASAQ and AL was evaluated using the standard World Health Organization protocol (WHO. Methods for Surveillance of Antimalarial Drug Efficacy. Geneva: World Health Organization; 2009. https://www.who.int/malaria/publications/atoz/9789241597531/en/ ). Eligible children were recruited and monitored clinically and parasitologically for 28 days. Polymorphisms in the Pfkelch 13, chloroquine resistance transporter (Pfcrt), multidrug resistance 1 (Pfmdr-1), dihydrofolate reductase (Pfdhfr), and dihydropteroate synthase (Pfdhps) genes and copy number variations in the plasmepsin-2 (Pfpm2) gene were assessed in pretreatment samples. RESULTS: Of the 359 children enrolled, 180 were treated with ASAQ (89 in Saclepea and 91 in Bensonville) and 179 with AL (90 in Sinje and 89 in Kakata). Of the recruited children, 332 (92.5%) reached study endpoints. PCR-corrected per-protocol analysis showed ACPR of 90.2% (95% CI: 78.6-96.7%) in Bensonville and 92.7% (95% CI: 83.4.8-96.5%) in Saclepea for ASAQ, while ACPR of 100% was observed in Kakata and Sinje for AL. In both treatment groups, only two patients had parasites on day 3. No artemisinin resistance associated Pfkelch13 mutations or multiple copies of Pfpm2 were found. Most samples tested had the Pfcrt 76 T mutation (80/91, 87.9%), while the Pfmdr-1 86Y (40/91, 44%) and 184F (47/91, 51.6%) mutations were less frequent. The Pfdhfr triple mutant (51I/59R/108 N) was the predominant allele (49.2%). For the Pfdhps gene, it was the 540E mutant (16.0%), and the 436A mutant (14.3%). The quintuple allele (51I/59R/108 N-437G/540E) was detected in only one isolate (1/357). CONCLUSION: This study reports a decline in the efficacy of ASAQ treatment, while AL remained highly effective, supporting the recent decision by NMCP to replace ASAQ with AL as first-line treatment for uncomplicated falciparum malaria. No association between the presence of the mutations in Pfcrt and Pfmdr-1 and the risk of parasite recrudescence in patients treated with ASAQ was observed. Parasites with signatures known to be associated with artemisinin and piperaquine resistance were not detected. The very low frequency of the quintuple Pfdhfr/Pfdhps mutant haplotype supports the continued use of SP for IPTp. Monitoring of efficacy and resistance markers of routinely used anti-malarials is necessary to inform malaria treatment policy. Trial registration ACTRN12617001064392.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Amodiaquina/farmacología , Amodiaquina/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/farmacología , Combinación Arteméter y Lumefantrina/uso terapéutico , Artesunato/farmacología , Artesunato/uso terapéutico , Niño , Cloroquina/farmacología , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Liberia , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Proteínas de Transporte de Membrana/genética , Plasmodium falciparum , Embarazo
7.
Emerg Infect Dis ; 27(10): 2711-2714, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34545800

RESUMEN

Oropouche fever is a zoonotic dengue-like syndrome caused by Oropouche virus. In August-September 2020, dengue-like syndrome developed in 41 patients in a remote rainforest village in French Guiana. By PCR or microneutralization, 23 (82.1%) of 28 tested patients were positive for Oropouche virus, documenting its emergence in French Guiana.


Asunto(s)
Infecciones por Bunyaviridae , Orthobunyavirus , Infecciones por Bunyaviridae/epidemiología , Brotes de Enfermedades , Guyana Francesa/epidemiología , Humanos , Orthobunyavirus/genética
8.
J Bacteriol ; 202(21)2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32817093

RESUMEN

The Negativicutes are a clade of the Firmicutes that have retained the ancestral diderm character and possess an outer membrane. One of the best studied Negativicutes, Veillonella parvula, is an anaerobic commensal and opportunistic pathogen inhabiting complex human microbial communities, including the gut and the dental plaque microbiota. Whereas the adhesion and biofilm capacities of V. parvula are expected to be crucial for its maintenance and development in these environments, studies of V. parvula adhesion have been hindered by the lack of efficient genetic tools to perform functional analyses in this bacterium. Here, we took advantage of a recently described naturally transformable V. parvula isolate, SKV38, and adapted tools developed for the closely related Clostridia spp. to perform random transposon and targeted mutagenesis to identify V. parvula genes involved in biofilm formation. We show that type V secreted autotransporters, typically found in diderm bacteria, are the main determinants of V. parvula autoaggregation and biofilm formation and compete with each other for binding either to cells or to surfaces, with strong consequences for V. parvula biofilm formation capacity. The identified trimeric autotransporters have an original structure compared to classical autotransporters identified in Proteobacteria, with an additional C-terminal domain. We also show that inactivation of the gene coding for a poorly characterized metal-dependent phosphohydrolase HD domain protein conserved in the Firmicutes and their closely related diderm phyla inhibits autotransporter-mediated biofilm formation. This study paves the way for further molecular characterization of V. parvula interactions with other bacteria and the host within complex microbiota environments.IMPORTANCEVeillonella parvula is an anaerobic commensal and opportunistic pathogen whose ability to adhere to surfaces or other bacteria and form biofilms is critical for it to inhabit complex human microbial communities such as the gut and oral microbiota. Although the adhesive capacity of V. parvula has been previously described, very little is known about the underlying molecular mechanisms due to a lack of genetically amenable Veillonella strains. In this study, we took advantage of a naturally transformable V. parvula isolate and newly adapted genetic tools to identify surface-exposed adhesins called autotransporters as the main molecular determinants of adhesion in this bacterium. This work therefore provides new insights on an important aspect of the V. parvula lifestyle, opening new possibilities for mechanistic studies of the contribution of biofilm formation to the biology of this major commensal of the oral-digestive tract.


Asunto(s)
Adhesinas Bacterianas , Adhesión Bacteriana/genética , Biopelículas/crecimiento & desarrollo , Sistemas de Secreción Tipo V , Veillonella/fisiología , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Sistemas de Secreción Tipo V/genética , Sistemas de Secreción Tipo V/metabolismo
9.
Emerg Infect Dis ; 26(6): 1084-1090, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32441631

RESUMEN

During 2015-2016, Cape Verde, an island nation off the coast of West Africa, experienced a Zika virus (ZIKV) outbreak involving 7,580 suspected Zika cases and 18 microcephaly cases. Analysis of the complete genomes of 3 ZIKV isolates from the outbreak indicated the strain was of the Asian (not African) lineage. The Cape Verde ZIKV sequences formed a distinct monophylogenetic group and possessed 1-2 (T659A, I756V) unique amino acid changes in the envelope protein. Phylogeographic and serologic evidence support earlier introduction of this lineage into Cape Verde, possibly from northeast Brazil, between June 2014 and August 2015, suggesting cryptic circulation of the virus before the initial wave of cases were detected in October 2015. These findings underscore the utility of genomic-scale epidemiology for outbreak investigations.


Asunto(s)
Microcefalia , Infección por el Virus Zika , Virus Zika , África Occidental , Brasil/epidemiología , Cabo Verde , Brotes de Enfermedades , Genómica , Humanos , Microcefalia/epidemiología , Virus Zika/genética , Infección por el Virus Zika/epidemiología
10.
Nature ; 505(7481): 50-5, 2014 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-24352242

RESUMEN

Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain ('K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Alelos , Animales , Células Sanguíneas/parasitología , Cambodia , Resistencia a Medicamentos/efectos de los fármacos , Marcadores Genéticos/genética , Semivida , Humanos , Malaria Falciparum/tratamiento farmacológico , Mutación/genética , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/aislamiento & purificación , Polimorfismo de Nucleótido Simple/genética , Estructura Terciaria de Proteína/genética , Proteínas Protozoarias/química , Factores de Tiempo
11.
Nucleic Acids Res ; 46(14): 6935-6949, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29982705

RESUMEN

The advent of the genomic era has made elucidating gene function on a large scale a pressing challenge. ORFeome collections, whereby almost all ORFs of a given species are cloned and can be subsequently leveraged in multiple functional genomic approaches, represent valuable resources toward this endeavor. Here we provide novel, genome-scale tools for the study of Candida albicans, a commensal yeast that is also responsible for frequent superficial and disseminated infections in humans. We have generated an ORFeome collection composed of 5099 ORFs cloned in a Gateway™ donor vector, representing 83% of the currently annotated coding sequences of C. albicans. Sequencing data of the cloned ORFs are available in the CandidaOrfDB database at http://candidaorfeome.eu. We also engineered 49 expression vectors with a choice of promoters, tags and selection markers and demonstrated their applicability to the study of target ORFs transferred from the C. albicans ORFeome. In addition, the use of the ORFeome in the detection of protein-protein interaction was demonstrated. Mating-compatible strains as well as Gateway™-compatible two-hybrid vectors were engineered, validated and used in a proof of concept experiment. These unique and valuable resources should greatly facilitate future functional studies in C. albicans and the elucidation of mechanisms that underlie its pathogenicity.


Asunto(s)
Candida albicans/genética , Sistemas de Lectura Abierta , Candida albicans/patogenicidad , Bases de Datos de Ácidos Nucleicos , Vectores Genéticos , Genómica , Mapeo de Interacción de Proteínas
12.
Genome Res ; 26(11): 1555-1564, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27662900

RESUMEN

Legionella pneumophila is an environmental bacterium and the leading cause of Legionnaires' disease. Just five sequence types (ST), from more than 2000 currently described, cause nearly half of disease cases in northwest Europe. Here, we report the sequence and analyses of 364 L. pneumophila genomes, including 337 from the five disease-associated STs and 27 representative of the species diversity. Phylogenetic analyses revealed that the five STs have independent origins within a highly diverse species. The number of de novo mutations is extremely low with maximum pairwise single-nucleotide polymorphisms (SNPs) ranging from 19 (ST47) to 127 (ST1), which suggests emergences within the last century. Isolates sampled geographically far apart differ by only a few SNPs, demonstrating rapid dissemination. These five STs have been recombining recently, leading to a shared pool of allelic variants potentially contributing to their increased disease propensity. The oldest clone, ST1, has spread globally; between 1940 and 2000, four new clones have emerged in Europe, which show long-distance, rapid dispersal. That a large proportion of clinical cases is caused by recently emerged and internationally dispersed clones, linked by convergent evolution, is surprising for an environmental bacterium traditionally considered to be an opportunistic pathogen. To simultaneously explain recent emergence, rapid spread and increased disease association, we hypothesize that these STs have adapted to new man-made environmental niches, which may be linked by human infection and transmission.


Asunto(s)
Evolución Molecular , Legionella pneumophila/genética , Enfermedad de los Legionarios/microbiología , Humanos , Legionella pneumophila/clasificación , Legionella pneumophila/aislamiento & purificación , Legionella pneumophila/patogenicidad , Mutación , Filogenia , Polimorfismo de Nucleótido Simple , Selección Genética , Virulencia/genética
13.
Proc Natl Acad Sci U S A ; 113(35): 9876-81, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27528665

RESUMEN

Horizontal gene transfer (HGT) is a major driving force of bacterial diversification and evolution. For tuberculosis-causing mycobacteria, the impact of HGT in the emergence and distribution of dominant lineages remains a matter of debate. Here, by using fluorescence-assisted mating assays and whole genome sequencing, we present unique experimental evidence of chromosomal DNA transfer between tubercle bacilli of the early-branching Mycobacterium canettii clade. We found that the obtained recombinants had received multiple donor-derived DNA fragments in the size range of 100 bp to 118 kbp, fragments large enough to contain whole operons. Although the transfer frequency between M. canettii strains was low and no transfer could be observed among classical Mycobacterium tuberculosis complex (MTBC) strains, our study provides the proof of concept for genetic exchange in tubercle bacilli. This outstanding, now experimentally validated phenomenon presumably played a key role in the early evolution of the MTBC toward pathogenicity. Moreover, our findings also provide important information for the risk evaluation of potential transfer of drug resistance and fitness mutations among clinically relevant mycobacterial strains.


Asunto(s)
ADN Bacteriano/genética , Transferencia de Gen Horizontal , Genoma Bacteriano/genética , Mycobacterium/genética , Evolución Molecular , Humanos , Mycobacterium/clasificación , Mycobacterium/fisiología , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiología , Especificidad de la Especie , Tuberculosis/microbiología , Secuenciación Completa del Genoma/métodos
14.
Med Microbiol Immunol ; 207(5-6): 287-296, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29936564

RESUMEN

An outbreak of nosocomial infections due to Streptococcus pyogenes (Group A Streptococcus; GAS) occurred in a post-surgery oncology unit and concerned more than 60 patients and lasted 20 months despite enhanced infection control and prophylaxis measures. All GAS strains were characterized (emm genotype, toxin gene profile and pulse-field gel electrophoresis subtype). Selected strains were sequenced and phylogenetic relationship established. Capacity to form biofilm and interaction with human pulmonary epithelial cells and macrophages were determined. Twenty-six GAS strains responsible for invasive infections (II) and 57 for non-II or colonization were isolated from patients (n = 66) or healthcare workers (n = 13). Seventy strains shared the same molecular markers and 69 the same PFGE pattern; 56 were sequenced. They all belonged to the emerging emm89 clade 3; all but 1 were clonal. Whole genome sequencing identified 43 genetic profiles with sporadic mutations in regulatory genes and acquired mutations in 2 structural genes. Except for two regulatory gene mutants, all strains tested had the same biofilm formation capacity and displayed similar adherence and invasion of pulmonary epithelial cells and phagocytosis and survival in human macrophages. This large outbreak of GAS infection in a post-surgery oncology unit, a setting that contains highly susceptible patients, arose from a strain of the emergent emm89 clade. No relationship between punctual or acquired mutations, invasive status, and strain phenotypic characteristics was found. Noteworthy, the phenotypic characteristics of this clone account for its emergence and its remarkable capacity to elicit outbreaks.


Asunto(s)
Brotes de Enfermedades , Genotipo , Infecciones Estreptocócicas/epidemiología , Streptococcus pyogenes/clasificación , Streptococcus pyogenes/aislamiento & purificación , Infección de la Herida Quirúrgica/epidemiología , Adulto , Anciano , Anciano de 80 o más Años , Toxinas Bacterianas/análisis , Biopelículas/crecimiento & desarrollo , Electroforesis en Gel de Campo Pulsado , Células Epiteliales/microbiología , Femenino , Francia , Técnicas de Genotipaje , Humanos , Macrófagos/microbiología , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Neoplasias/cirugía , Filogenia , Análisis de Secuencia de ADN , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/genética , Streptococcus pyogenes/crecimiento & desarrollo , Infección de la Herida Quirúrgica/microbiología , Adulto Joven
15.
Malar J ; 15: 206, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27066902

RESUMEN

BACKGROUND: In eukaryotic genomes, deletion or amplification rates have been estimated to be a thousand more frequent than single nucleotide variation. In Plasmodium falciparum, relatively few transcription factors have been identified, and the regulation of transcription is seemingly largely influenced by gene amplification events. Thus copy number variation (CNV) is a major mechanism enabling parasite genomes to adapt to new environmental changes. METHODS: Currently, the detection of CNVs is based on quantitative PCR (qPCR), which is significantly limited by the relatively small number of genes that can be analysed at any one time. Technological advances that facilitate whole-genome sequencing, such as next generation sequencing (NGS) enable deeper analyses of the genomic variation to be performed. Because the characteristics of Plasmodium CNVs need special consideration in algorithms and strategies for which classical CNV detection programs are not suited a dedicated algorithm to detect CNVs across the entire exome of P. falciparum was developed. This algorithm is based on a custom read depth strategy through NGS data and called PlasmoCNVScan. RESULTS: The analysis of CNV identification on three genes known to have different levels of amplification and which are located either in the nuclear, apicoplast or mitochondrial genomes is presented. The results are correlated with the qPCR experiments, usually used for identification of locus specific amplification/deletion. CONCLUSIONS: This tool will facilitate the study of P. falciparum genomic adaptation in response to ecological changes: drug pressure, decreased transmission, reduction of the parasite population size (transition to pre-elimination endemic area).


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma de Protozoos , Plasmodium/genética , Proteínas Protozoarias/genética , Cambodia , Citocromos b/genética , Genómica , Haploidia , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Malar J ; 15: 319, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27301553

RESUMEN

BACKGROUND: Western Cambodia is recognized as the epicentre of emergence of Plasmodium falciparum multi-drug resistance. The emergence of artemisinin resistance has been observed in this area since 2008-2009 and molecular signatures associated to artemisinin resistance have been characterized in k13 gene. At present, one of the major threats faced, is the possible spread of Asian artemisinin resistant parasites over the world threatening millions of people and jeopardizing malaria elimination programme efforts. To anticipate the diffusion of artemisinin resistance, the identification of the P. falciparum population structure and the gene flow among the parasite population in Cambodia are essential. METHODS: To this end, a mid-throughput PCR-LDR-FMA approach based on LUMINEX technology was developed to screen for genetic barcode in 533 blood samples collected in 2010-2011 from 16 health centres in malaria endemics areas in Cambodia. RESULTS: Based on successful typing of 282 samples, subpopulations were characterized along the borders of the country. Each 11-loci barcode provides evidence supporting allele distribution gradient related to subpopulations and gene flow. The 11-loci barcode successfully identifies recently emerging parasite subpopulations in western Cambodia that are associated with the C580Y dominant allele for artemisinin resistance in k13 gene. A subpopulation was identified in northern Cambodia that was associated to artemisinin (R539T resistant allele of k13 gene) and mefloquine resistance. CONCLUSIONS: The gene flow between these subpopulations might have driven the spread of artemisinin resistance over Cambodia.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Flujo Génico , Variación Genética , Plasmodium falciparum/clasificación , Plasmodium falciparum/genética , Cambodia , Código de Barras del ADN Taxonómico , Genotipo , Humanos , Malaria Falciparum/parasitología , Plasmodium falciparum/aislamiento & purificación
17.
BMC Biol ; 13: 69, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26329162

RESUMEN

BACKGROUND: The opportunistic pathogen Candida glabrata is a member of the Saccharomycetaceae yeasts. Like its close relative Saccharomyces cerevisiae, it underwent a whole-genome duplication followed by an extensive loss of genes. Its genome contains a large number of very long tandem repeats, called megasatellites. In order to determine the whole replication program of the C. glabrata genome and its general chromosomal organization, we used deep-sequencing and chromosome conformation capture experiments. RESULTS: We identified 253 replication fork origins, genome wide. Centromeres, HML and HMR loci, and most histone genes are replicated early, whereas natural chromosomal breakpoints are located in late-replicating regions. In addition, 275 autonomously replicating sequences (ARS) were identified during ARS-capture experiments, and their relative fitness was determined during growth competition. Analysis of ARSs allowed us to identify a 17-bp consensus, similar to the S. cerevisiae ARS consensus sequence but slightly more constrained. Megasatellites are not in close proximity to replication origins or termini. Using chromosome conformation capture, we also show that early origins tend to cluster whereas non-subtelomeric megasatellites do not cluster in the yeast nucleus. CONCLUSIONS: Despite a shorter cell cycle, the C. glabrata replication program shares unexpected striking similarities to S. cerevisiae, in spite of their large evolutionary distance and the presence of highly repetitive large tandem repeats in C. glabrata. No correlation could be found between the replication program and megasatellites, suggesting that their formation and propagation might not be directly caused by replication fork initiation or termination.


Asunto(s)
Candida glabrata/genética , Cromosomas Fúngicos , Replicación del ADN , Genoma Fúngico , Ciclo Celular/genética , Genes Fúngicos
19.
Mol Microbiol ; 90(3): 612-29, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23998761

RESUMEN

Mycobacterium abscessus is an emerging pathogen that is increasingly recognized as a relevant cause of human lung infection in cystic fibrosis patients. This highly antibiotic-resistant mycobacterium is an exception within the rapidly growing mycobacteria, which are mainly saprophytic and non-pathogenic organisms. M. abscessus manifests as either a smooth (S) or a rough (R) colony morphotype, which is of clinical importance as R morphotypes are associated with more severe and persistent infections. To better understand the molecular mechanisms behind the S/R alterations, we analysed S and R variants of three isogenic M. abscessus S/R pairs using an unbiased approach involving genome and transcriptome analyses, transcriptional fusions and integrating constructs. This revealed different small insertions, deletions (indels) or single nucleotide polymorphisms within the non-ribosomal peptide synthase gene cluster mps1-mps2-gap or mmpl4b in the three R variants, consistent with the transcriptional differences identified within this genomic locus that is implicated in the synthesis and transport of Glyco-Peptido-Lipids (GPL). In contrast to previous reports, the identification of clearly defined genetic lesions responsible for the loss of GPL-production or transport makes a frequent switching back-and-forth between smooth and rough morphologies in M. abscessus highly unlikely, which is important for our understanding of persistent M. abscessus infections.


Asunto(s)
Genes Bacterianos , Lípidos/biosíntesis , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium/genética , Péptido Sintasas/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Perfilación de la Expresión Génica , Variación Genética , Genoma Bacteriano , Humanos , Mutación INDEL , Datos de Secuencia Molecular , Familia de Multigenes , Mycobacterium/clasificación , Mycobacterium/patogenicidad , Polimorfismo de Nucleótido Simple
20.
Microbiol Spectr ; 12(6): e0412623, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38700329

RESUMEN

Four species of non-tuberculous mycobacteria (NTM) rated as biosafety level 1 or 2 (BSL-1/BSL-2) organisms and showing higher genomic similarity with Mycobacterium tuberculosis (Mtb) than previous comparator species Mycobacterium kansasii and Mycobacterium marinum were subjected to genomic and phenotypic characterization. These species named Mycobacterium decipiens, Mycobacterium lacus, Mycobacterium riyadhense, and Mycobacterium shinjukuense might represent "missing links" between low-virulent mycobacterial opportunists and the highly virulent obligate pathogen Mtb. We confirmed that M. decipiens is the closest NTM species to Mtb currently known and found that it has an optimal growth temperature of 32°C-35°C and not 37°C. M. decipiens showed resistance to rifampicin, isoniazid, and ethambutol, whereas M. lacus and M. riyadhense showed resistance to isoniazid and ethambutol. M. shinjukuense was sensitive to all three first-line TB drugs, and all four species were sensitive to bedaquiline, a third-generation anti-TB drug. Our results suggest these four NTM may be useful models for the identification and study of new anti-TB molecules, facilitated by their culture under non-BSL-3 conditions as compared to Mtb. M. riyadhense was the most virulent of the four species in cellular and mouse infection models. M. decipiens also multiplied in THP-1 cells at 35°C but was growth impaired at 37°C. Genomic comparisons showed that the espACD locus, essential for the secretion of ESX-1 proteins in Mtb, was present only in M. decipiens, which was able to secrete ESAT-6 and CFP-10, whereas secretion of these antigens varied in the other species, making the four species interesting examples for studying ESX-1 secretion mechanisms.IMPORTANCEIn this work, we investigated recently identified opportunistic mycobacterial pathogens that are genomically more closely related to Mycobacterium tuberculosis (Mtb) than previously used comparator species Mycobacterium kansasii and Mycobacterium marinum. We confirmed that Mycobacterium decipiens is the currently closest known species to the tubercle bacilli, represented by Mycobacterium canettii and Mtb strains. Surprisingly, the reference strain of Mycobacterium riyadhense (DSM 45176), which was purchased as a biosafety level 1 (BSL-1)-rated organism, was the most virulent of the four species in the tested cellular and mouse infection models, suggesting that a BSL-2 rating might be more appropriate for this strain than the current BSL-1 rating. Our work establishes the four NTM species as interesting study models to obtain new insights into the evolutionary mechanisms and phenotypic particularities of mycobacterial pathogens that likely have also impacted the evolution of the key pathogen Mtb.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Micobacterias no Tuberculosas , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Micobacterias no Tuberculosas/genética , Micobacterias no Tuberculosas/efectos de los fármacos , Micobacterias no Tuberculosas/clasificación , Micobacterias no Tuberculosas/crecimiento & desarrollo , Humanos , Genoma Bacteriano/genética , Genómica , Fenotipo , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/microbiología , Filogenia , Animales , Tuberculosis/microbiología , Farmacorresistencia Bacteriana/genética , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA