Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Genet ; 14: 1131198, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36999058

RESUMEN

Background: The association between inflammatory cytokines and osteoarthritis (OA) has been reported in several observational studies, but the causal relationship between these two remains unknown. Hence, we performed this two-sample Mendelian randomization (MR) to confirm the causal relationship between circulating levels of inflammatory factors and osteoarthritis risk. Method: We used genetic variants associated with cytokine circulation levels from a meta-analysis of genome-wide association studies (GWASs) in 8,293 Finns as instrumental variables and obtained OA data from the United Kingdom Biobank, including a total of 345,169 subjects of European ancestry (66,031 diagnosed OA cases and 279,138 controls). Inverse variance weighting (IVW), MR-Egger, Wald Ratio, weighted median, and MR multiplicity residual sums with outliers (MR-PRESSO) were used. Result: We found a causal relationship between circulating levels of macrophage inflammatory protein-1beta (MIP-1ß) and risk of OA (OR = 0.998, 95% CI = 0.996-0.999p = 9.61 × 10-5); tumour necrosis factor beta (TNF-ß) was also causally associated with risk of OA (OR = 0.996,95%CI = 0.994-0.999, p = 0.002); finally we found a suggestive association between C-C motif chemokine ligand 5(CCL5, also called Rantes) and OA risk (OR = 1.013, 95%CI = 1.002-1.024,p = 0.016). Conclusion: Our findings offer promising leads for the development of new therapeutic targets in the treatment of osteoarthritis. By identifying the role of inflammatory cytokines in this debilitating condition through a genetic epidemiological approach, our study contributes to a better understanding of the underlying disease mechanisms. These insights may ultimately pave the way for more effective treatments that improve patient outcomes.

2.
Micromachines (Basel) ; 14(7)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37512763

RESUMEN

Healthcare technology has allowed individuals to monitor and track various physiological and biological parameters. With the growing trend of the use of the internet of things and big data, wearable biosensors have shown great potential in gaining access to the human body, and providing additional functionality to analyze physiological and biochemical information, which has led to a better personalized and more efficient healthcare. In this review, we summarize the biomarkers in interstitial fluid, introduce and explain the extraction methods for interstitial fluid, and discuss the application of epidermal wearable biosensors for the continuous monitoring of markers in clinical biology. In addition, the current needs, development prospects and challenges are briefly discussed.

3.
Front Pharmacol ; 13: 902102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865965

RESUMEN

Osteoporosis (OP) is an aging-related disease that is the main etiology of fragility fracture. Qing'e Pill (QEP) is a mixture of traditional Chinese medicine (TCM) consisting of Eucommia ulmoides Oliv., Psoralea corylifolia L., Juglans regia L., and Allium sativum L. QEP has an anti-osteoporosis function, but the underlying mechanism remains unclear. In this study, online databases were employed to determine the chemical compounds of QEP and potential target genes in osteoporosis. Potential pathways associated with genes were defined by Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) databases. A compound-target-disease network was constructed. Hub genes screened through Cytoscape were intersected with the FerrDB database. The potential key genes were validated in HFOB 1.19 cells, and rat models were ovariectomized through Western blot, RT-qPCR, ELISA, HE staining, immunohistochemistry, and immunofluorescence analyses. The intersection targets of QEP and osteoporosis contained 121 proteins, whereas the target-pathway network included 156 pathways. We filtered five genes that stood out in the network analysis for experimental verification. The experiments validated that QEP exerted therapeutic effects on osteoporosis by inhibiting ferroptosis and promoting cell survival via the PI3K/AKT pathway and ATM. In conclusion, combining the application of network analysis and experimental verification may provide an efficient method to validate the molecular mechanism of QEP on osteoporosis.

4.
Front Genet ; 12: 686000, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34306026

RESUMEN

N6-methyladenosine (m6A) is one of the most plentiful internal RNA modifications, especially in eukaryotic messenger RNA (mRNA), which plays pivotal roles in the regulation of mRNA life cycle and nerve development. However, the mRNA m6A methylation pattern in peripheral nervous injury (PNI) has not been investigated. In this study, sciatic nerve samples were collected from 7 days after sciatic nerve injury (SNI) and control rats. Quantitative real-time PCR demonstrated that m6A-related methyltransferase/demethylase genes were remarkably upregulated in SNI group compared with control group. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) was performed to reveal the m6A methylation landscape. The results showed that 4,014 m6A peaks were significantly altered, including 2,144 upregulated and 1,870 downregulated m6A peaks, which were corresponded to 1,858 genes. Moreover, 919 differentially expressed genes were identified by the conjoint analysis of MeRIP-seq and RNA-seq. GO and KEGG pathway analyses were performed to determine the biological functions and signaling pathways of the m6A-modified genes. Notably, these genes were mainly related to the immune system process, cell activation, and nervous system development in GO analysis. KEGG pathway analysis revealed that these genes were involved in the cell cycle, B cell receptor signaling pathway, axon guidance pathway, and calcium signaling pathway. Furthermore, the m6A methylation and protein expression levels of autophagy-related gene (Atg7) were increased, together with the activation of autophagy. These findings shed some light on the epigenetic regulation of gene expression, which may provide a new opinion to promote functional recovery after PNI.

5.
Acta Crystallogr C Struct Chem ; 76(Pt 6): 547-556, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32499451

RESUMEN

Two new Zn2+-based metal-organic frameworks (MOFs) based on biphenyl-2,2',5,5'-tetracarboxylic acid, i.e. H4(o,m-bpta), and N-donor ligands, namely, poly[[(µ4-biphenyl-2,2',5,5'-tetracarboxylato)bis{[1,3-phenylenebis(methylene)]bis(1H-imidazole)}dizinc(II)] dimethylformamide monosolvate dihydrate], {[Zn2(C16H6O8)(C14H14N4)2]·C3H7NO·2H2O}n or {[Zn2(o,m-bpta)(1,3-bimb)2]·C3H7NO·2H2O}n (1) {1,3-bimb = [1,3-phenylenebis(methylene)]bis(1H-imidazole)}, and poly[[(µ4-biphenyl-2,2',5,5'-tetracarboxylato)bis{[1,4-phenylenebis(methylene)]bis(1H-imidazole)}dizinc(II)] monohydrate], {[Zn2(C16H6O8)(C14H14N4)2]·H2O}n or {[Zn2(o,m-bpta)(1,4-bimb)2]·H2O}n (2) {1,4-bimb = [1,4-phenylenebis(methylene)]bis(1H-imidazole)}, have been synthesized under solvothermal conditions. The complexes were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction and powder X-ray diffraction analysis. Structurally, the (o,m-bpta)4- ligands are fully deprotonated and combine with Zn2+ ions in µ4-coordination modes. Complex 1 is a (3,4)-connected porous network with honeycomb-like [Zn2(o,m-bpta)]n sheets formed by 4-connected (o,m-bpta)4- ligands. Complex 2 exhibits a (2,4)-connected network formed by 4-connected (o,m-bpta)4- ligands linking Zn2+ ions in left-handed helical chains. The cis-configured 1,3-bimb and 1,4-bimb ligands bridge Zn2+ ions to form multi-membered [Zn2(bimb)2] loops. Optically, the complexes show strong fluorescence and display larger red shifts compared to free H4(o,m-bpta). Complex 2 shows ferroelectric properties due to crystallizing in the C2v polar point group.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA