Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326652

RESUMEN

Aluminum (Al) toxicity limits plant growth and has a major impact on the agricultural productivity in acidic soils. The zinc-finger protein (ZFP) family plays multiple roles in plant development and abiotic stresses. Although previous reports have confirmed the function of these genes, their transcriptional mechanisms in wild soybean (Glycine soja) are unclear. In this study, GsGIS3 was isolated from Al-tolerant wild soybean gene expression profiles to be functionally characterized in Arabidopsis. Laser confocal microscopic observations demonstrated that GsGIS3 is a nuclear protein, containing one C2H2 zinc-finger structure. Our results show that the expression of GsGIS3 was of a much higher level in the stem than in the leaf and root and was upregulated under AlCl3, NaCl or GA3 treatment. Compared to the control, overexpression of GsGIS3 in Arabidopsis improved Al tolerance in transgenic lines with more root growth, higher proline and lower Malondialdehyde (MDA) accumulation under concentrations of AlCl3. Analysis of hematoxylin staining indicated that GsGIS3 enhanced the resistance of transgenic plants to Al toxicity by reducing Al accumulation in Arabidopsis roots. Moreover, GsGIS3 expression in Arabidopsis enhanced the expression of Al-tolerance-related genes. Taken together, our findings indicate that GsGIS3, as a C2H2 ZFP, may enhance tolerance to Al toxicity through positive regulation of Al-tolerance-related genes.


Asunto(s)
Aluminio/toxicidad , Arabidopsis/metabolismo , Dedos de Zinc CYS2-HIS2/genética , Glycine max/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Cloruro de Aluminio/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/farmacología , Microscopía Confocal , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Cloruro de Sodio/farmacología , Factores de Transcripción/genética , Regulación hacia Arriba
2.
BMC Plant Biol ; 12: 182, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23040172

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) play important regulatory roles in development and stress response in plants. Wild soybean (Glycine soja) has undergone long-term natural selection and may have evolved special mechanisms to survive stress conditions as a result. However, little information about miRNAs especially miRNAs responsive to aluminum (Al) stress is available in wild soybean. RESULTS: Two small RNA libraries and two degradome libraries were constructed from the roots of Al-treated and Al-free G. soja seedlings. For miRNA identification, a total of 7,287,655 and 7,035,914 clean reads in Al-treated and Al-free small RNAs libraries, respectively, were generated, and 97 known miRNAs and 31 novel miRNAs were identified. In addition, 49 p3 or p5 strands of known miRNAs were found. Among all the identified miRNAs, the expressions of 30 miRNAs were responsive to Al stress. Through degradome sequencing, 86 genes were identified as targets of the known miRNAs and five genes were found to be the targets of the novel miRNAs obtained in this study. Gene ontology (GO) annotations of target transcripts indicated that 52 target genes cleaved by conserved miRNA families might play roles in the regulation of transcription. Additionally, some genes, such as those for the auxin response factor (ARF), domain-containing disease resistance protein (NB-ARC), leucine-rich repeat and toll/interleukin-1 receptor-like protein (LRR-TIR) domain protein, cation transporting ATPase, Myb transcription factors, and the no apical meristem (NAM) protein, that are known to be responsive to stress, were found to be cleaved under Al stress conditions. CONCLUSIONS: A number of miRNAs and their targets were detected in wild soybean. Some of them that were responsive to biotic and abiotic stresses were regulated by Al stress. These findings provide valuable information to understand the function of miRNAs in Al tolerance.


Asunto(s)
Aluminio/toxicidad , Genes de Plantas/genética , Glycine max/genética , Glycine max/fisiología , MicroARNs/metabolismo , Estrés Fisiológico/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , Anotación de Secuencia Molecular , Estabilidad del ARN/efectos de los fármacos , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Glycine max/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos
3.
Front Plant Sci ; 9: 1634, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30542353

RESUMEN

Nitric oxide (NO) production via NO synthase (NOS) plays a vital role in plant tolerance to salt stress. However, the factor(s) regulating NOS-like activity in plant salt stress tolerance remains elusive. Here, we show that Arabidopsis SORTING NEXIN 1 (SNX1), which can restore H2O2-induced NO accumulation in yeast Δsnx4 mutant, functions in plant salt stress tolerance. Salt stress induced NO accumulation through promoted NOS-like activity in the wild type, but this induction was repressed in salt-stressed snx1-2 mutant with the mutation of SNX1 because NOS-like activity was inhibited in the mutant. Consistently, snx1-2 displayed reduced tolerance to high salinity with decreased survival rate compared with the wild type, and exogenous treatment with NO donor significantly rescued the hypersensitivity of the mutant to salt stress. In addition, the snx1-2 mutant with reduced NOS-like activity repressed the expression of stress-responsive genes, decreased proline accumulation and anti-oxidant ability compared with wild-type plants when subjected to salt stress. Taken together with our finding that salt induces the expression of SNX1, our results reveal that SNX1 plays a crucial role in plant salt stress tolerance by regulating NOS-like activity and thus NO accumulation.

4.
PLoS One ; 8(12): e83011, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376625

RESUMEN

The dehydration responsive element binding (DREB) transcription factors play an important role in regulating stress-related genes. OsDREB2A, a member of the DREBP subfamily of AP2/ERF transcription factors in rice (Oryza sativa), is involved in the abiotic stress response. OsDREB2A expression is induced by drought, low-temperature and salt stresses. Here, we report the ability of OsDREB2A to regulate high-salt response in transgenic soybean. Overexpressing OsDREB2A in soybeans enhanced salt tolerance by accumulating osmolytes, such as soluble sugars and free proline, and improving the expression levels of some stress-responsive transcription factors and key genes. The phenotypic characterization of transgenic soybean were significantly better than those of wild-type (WT). Electrophoresis mobility shift assay (EMSA) revealed that the OsDREB2A can bind to the DRE core element in vitro. These results indicate that OsDREB2A may participate in abiotic stress by directly binding with DRE element to regulate the expression of downstream genes. Overexpression of OsDREB2A in soybean might be used to improve tolerance to salt stress.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Oryza/genética , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Factores de Transcripción/genética , Frío , Deshidratación , Ensayo de Cambio de Movilidad Electroforética , Oryza/efectos de los fármacos , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , Elementos de Respuesta , Salinidad , Cloruro de Sodio/farmacología , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo
5.
Cell Res ; 16(12): 916-22, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17117160

RESUMEN

Heterotrimeric G proteins are known to function as messengers in numerous signal transduction pathways. The null mutation of RGA (rice heterotrimeric G protein alpha subunit), which encodes the alpha subunit of heterotrimeric G protein in rice, causes severe dwarfism and reduced responsiveness to gibberellic acid in rice. However, less is known about heterotrimeric G protein in brassinosteroid (BR) signaling, one of the well-understood phytohormone pathways. In the present study, we used root elongation inhibition assay, lamina inclination assay and coleoptile elongation analysis to demonstrated reduced sensitivity of d1 mutant plants (caused by the null mutation of RGA) to 24-epibrassinolide (24-epiBL), which belongs to brassinosteroids and plays a wide variety of roles in plant growth and development. Moreover, RGA transcript level was decreased in 24-epiBL-treated seedlings in a dose-dependent manner. Our results show that RGA is involved in rice brassinosteroid response, which may be beneficial to elucidate the molecular mechanisms of G protein signaling and provide a novel perspective to understand BR signaling in higher plants.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/fisiología , Oryza/fisiología , Fitosteroles/farmacología , Proteínas de Plantas/fisiología , Proteínas Quinasas/fisiología , Transducción de Señal/fisiología , Proteínas de Arabidopsis/genética , Subunidades alfa de la Proteína de Unión al GTP/genética , Oryza/enzimología , Oryza/genética , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA