Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2230-2246, 2024 Apr.
Artículo en Zh | MEDLINE | ID: mdl-38812238

RESUMEN

Total triterpenoids from the fruits of Chaenomeles speciosa(TCS) are active components in the prevention and treatment of gastric mucosal damage, which have potential anti-aging effects. However, it is still unclear whether TCS can improve gastric aging, especially its molecular mechanism against gastric aging. On this basis, this study explored the effect and mechanism of TCS on senescent GES-1 cells induced by D-galactose(D-gal) to provide scientific data for the clinical use of TCS to prevent gastric aging. GES-1 cells cultured in vitro and those transfected with overexpression GLS1(GLS1-OE) plasmid of glutaminase 1(GLS1) were induced to aging by D-gal, and then TCS and or GLS1 inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide(BPTES) were given. Cell survival rate, positive rate of ß-galactosidase(SA-ß-gal) staining, mitochondrial membrane potential(MMP), and apoptosis were investigated. GLS1 activity, levels of glutamine(Gln), glutamate(Glu), α-ketoglutarate(α-KG), urea, and ammonia in supernatant and cells were detected by enzyme-linked immunosorbent assay(ELISA) and colorimetric methods. The mRNA and protein expressions of GLS1 and the related genes of the mitochondrial apoptosis signaling pathway were measured by real-time fluorescence quantitative PCR and Western blot. The results manifested that compared with the D-gal model group and GLS1-OE D-gal model group, TCS significantly decreased the SA-ß-gal staining positive cell rate and MMP of D-gal-induced senescent GES-1 cells and GLS1-OE senescent GES-1 cells, inhibited the survival of senescent cells, and promoted their apoptosis(P<0.01). It decreased the activity of GLS1 and the content of Gln, Glu, α-KG, urea, and ammonia in supernatant and cell(P<0.01), reduced the concentration of cytochrome C(Cyto C) in mitochondria and the mRNA and protein expressions of GLS1 and proliferating nuclear antigen in cells(P<0.01). The mRNA expression of Bcl-2 and Bcl-xl, the protein expression of pro-caspase-9 and pro-caspase-3, and the ratio of Bcl-2/Bax and Bcl-xl/Bad in cells were decreased(P<0.01). Cyto C concentration in the cytoplasm, the mRNA expressions of Bax, Bad, apoptosis protease activating factor 1(Apaf-1), and protein expressions of cleaved-caspase-9, cleaved-caspase-3, cleaved-PARP-1 were increased(P<0.01). The aforementioned results indicate that TCS can counteract the senescent GES-1 cells induced by D-gal, and its mechanism may be closely related to suppressing the Gln/GLS1/α-KG metabolic axis, activating the mitochondrial apoptosis pathway, and thereby accelerating the apoptosis of the senescent cells and eliminating senescent cells.


Asunto(s)
Apoptosis , Frutas , Galactosa , Glutaminasa , Glutamina , Mitocondrias , Transducción de Señal , Triterpenos , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Triterpenos/farmacología , Triterpenos/química , Humanos , Transducción de Señal/efectos de los fármacos , Línea Celular , Frutas/química , Glutamina/farmacología , Glutamina/metabolismo , Glutaminasa/metabolismo , Glutaminasa/genética , Senescencia Celular/efectos de los fármacos , Ácidos Cetoglutáricos/farmacología , Ácidos Cetoglutáricos/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6740-6748, 2023 Dec.
Artículo en Zh | MEDLINE | ID: mdl-38212034

RESUMEN

This study observed the effects of Guiqi Yiyuan Ointment(GQYY) on the left lung subjecting to bystander effect of right lung injury induced by ~(12)C~(6+) beam in rats and decipher the underlying mechanism from NOD-like receptor protein 3(NLRP3)/apoptosis-associated speck-like protein containing a CARD(ASC)/cysteinyl aspartate specific proteinase-1(caspase-1) pathway. Wistar rats were randomized into 7 groups: blank, model, inhibitor [200 mg·kg~(-1), N-acetylcysteine(NAC)], western drug [140 mg·kg~(-1) amifostine(AMI)], and high-, medium-, and low-dose(4.8, 2.4, and 1.2 g·kg~(-1), respectively) GQYY groups. The model of bystander effect damage was established by 4 Gy ~(12)C~(6+) beam irradiation of the right lung(with the other part shielded by a lead plate). The pathological changes in the lung tissue, the level of reactive oxygen species(ROS) in the lung tissue, and the levels of superoxide dismutase(SOD) and malondialdehyde(MDA) in the serum were observed and measured in each group. Furthermore, the mRNA and protein levels of NLRP3, ASC, caspase-1, and phosphorylated nuclear factor-κB p65(p-NF-κB p65)/nuclear factor-κB p65(NF-κB p65) were determined. Compared with the blank group, the model group showed thickened alveolar wall, narrowed alveolar cavity, and presence of massive red blood cells and inflammatory infiltration in the alveolar wall and alveolar cavity. In addition, the model group showed elevated ROS levels in both left and right lungs, elevated MDA level, lowered SOD level, and up-regulated mRNA and protein levels of NLRP3, ASC, caspase-1, and p-NF-κB p65/NF-κB p65. Compared with the model group, the drug administration in all the groups reduced inflammatory cell infiltration in the lung tissue. The inhibitor group and the western drug group showed enlarged alveolar cavity, thinned interstitium, and reduced inflammation. There was a small amount of alveolar wall rupture in the high-and medium-dose GQYY groups and reduced inflammatory cell infiltration in the low dose GQYY group. Compared with the model group, drug administration lowered level of ROS in the left and right lungs, lowered the MDA level, elevated the SOD level, and down-regulated the mRNA and protein levels of NLRP3, ASC, caspase-1, and p-NF-κB p65/NF-κB p65. GQYY can effectively reduce the damage caused by radiation and bystander effect, which may be associated with the ROS-mediated NLRP3 inflammasome activation.


Asunto(s)
Lesión Pulmonar , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Inflamasomas/metabolismo , Lesión Pulmonar/etiología , Lesión Pulmonar/genética , Especies Reactivas de Oxígeno/metabolismo , Efecto Espectador , Pomadas , Ratas Wistar , Pulmón/metabolismo , Caspasa 1/metabolismo , ARN Mensajero , Superóxido Dismutasa
3.
Br J Pharmacol ; 171(15): 3680-92, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24758567

RESUMEN

BACKGROUND AND PURPOSE: The molecular identity of calcium-activated chloride channels (CaCCs) in vascular endothelial cells remains unknown. This study sought to identify whether anoctamin-1 (Ano1, also known as TMEM16A) functions as a CaCC and whether hypoxia alters the biophysical properties of Ano1 in mouse cardiac vascular endothelial cells (CVECs). EXPERIMENTAL APPROACH: Western blot, quantitative real-time PCR, confocal imaging analysis and patch-clamp analysis combined with pharmacological approaches were used to determine whether Ano1 was expressed and functioned as CaCC in CVECs. KEY RESULTS: Ano1 was expressed in CVECs. The biophysical properties of the current generated in the CVECs, including the Ca(2+) and voltage dependence, outward rectification, anion selectivity and the pharmacological profile, are similar to those described for CaCCs. The density of ICl ( C a) detected in CVECs was significantly inhibited by T16Ainh -A01, an Ano1 inhibitor, and a pore-targeting, specific anti-Ano1 antibody, and was markedly decreased in Ano1 gene knockdown CVECs. The density of ICl ( C a) was significantly potentiated in CVECs exposed to hypoxia, and this hypoxia-induced increase in the density of ICl ( C a) was inhibited by T16Ainh -A01 or anti-Ano1 antibody. Hypoxia also increased the current density of ICl ( C a) in Ano1 gene knockdown CVECs. CONCLUSIONS AND IMPLICATIONS: Ano1 formed CaCC in CVECs of neonatal mice. Hypoxia enhances Ano1-mediated ICl ( C a) density via increasing its expression, altering the ratio of its splicing variants, sensitivity to membrane voltage and to Ca(2+) . Ano1 may play a role in the pathophysiological processes during ischaemia in heart, and therefore, Ano1 might be a potential therapeutic target to prevent ischaemic damage.


Asunto(s)
Canales de Cloruro/fisiología , Células Endoteliales/fisiología , Hipoxia/fisiopatología , Animales , Animales Recién Nacidos , Anoctamina-1 , Secuencia de Bases , Calcio/farmacología , Proliferación Celular , Células Cultivadas , Canales de Cloruro/genética , Células Endoteliales/efectos de los fármacos , Silenciador del Gen , Proteínas Fluorescentes Verdes/genética , Ventrículos Cardíacos/citología , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA