Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 17(1): e2005739, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33284509

RESUMEN

Bacterial infections have become a major danger to public health because of the appearance of the antibiotic resistance. The synergistic combination of multiple therapies should be more effective compared with the respective one alone, but has been rarely demonstrated in combating bacterial infections till now. Herein, oxygen-vacancy molybdenum trioxide nanodots (MoO3-x NDs) are proposed as an efficient and safe bacteriostatic. The MoO3-x NDs alone possess triple-therapy synergistic efficiency based on the single near-infrared irradiation (808 nm) regulated combination of photodynamic, photothermal, and peroxidase-like enzymatic activities. Therein, photodynamic and photothermal therapies can be both achieved under the excitation of a single wavelength light source (808 nm). Both the photodynamic and nanozyme activity can result in the generation of reactive oxygen species (ROS) to reach the broad-spectrum sterilization. Interestingly, the photothermal effect can regulate the MoO3-x NDs to their optimum enzymatic temperature (50 °C) to give sufficient ROS generation in low concentration of H2 O2 (100 µm). The MoO3-x NDs show excellent antibacterial efficiency against drug-resistance extended spectrum ß-lactamases producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Animal experiments further indicate that the MoO3-x NDs can effectively treat wounds infected with MRSA in living systems.


Asunto(s)
Infecciones Bacterianas , Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Animales , Antibacterianos/farmacología , Molibdeno , Óxidos , Oxígeno
2.
Adv Healthc Mater ; : e2401602, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900390

RESUMEN

Heterostructure nanozymes as antibiotic-free antimicrobial agents exhibit great potential for multidrug-resistant (MDR) bacterial strains elimination. However, realization of heterostructure antimicrobials with enhanced interfacial interaction for synergistically amplified antibacterial therapy is still a great challenge. Herein, oxygen-vacancy-enriched glucose modified MoOx (G-MoOx) is exploited as a reducing agent to spontaneously reduce Ag (I) into Ag (0) that in situ grows onto the surface of G-MoOx. The resultant Ag doped G-MoOx (Ag/G-MoOx) heterostructure displays augmenting photothermal effect and NIR-enhanced oxidase-like activity after introducing Ag nanoparticles. What's more, NIR hyperthermia accelerate Ag+ ions release from Ag nanoparticles. Introduction of Ag greatly enhances antimicrobial activities of Ag/G-MoOx against MDR bacteria, especially the hybrid loading with 1 wt% Ag NPs exhibiting antibacterial efficacy up to 99.99% against Methicillin-resistant Staphylococcus aureus (MRSA, 1×106 CFU mL-1).

3.
J Colloid Interface Sci ; 559: 313-323, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675662

RESUMEN

Antibiotic resistance is a common phenomenon observed during treatment with antibacterials. Use of nanozymes, especially those with synergistic enzyme-like activities, as antibacterials could overcome this problem, but their synthesis is limited by their high cost and/or complex production process. Herein, vanadium oxide nanodots (VOxNDs) were prepared via a one-step bottom-up ethanol-thermal method using vanadium trichloride as the precursor. VOxNDs alone possess bienzyme mimics of peroxidase and oxidase. Accordingly, highly efficient antibacterials against drug-resistant bacteria can be obtained through synergistic catalysis; the oxidase-like activity decomposes O2 to generate superoxide anion radical (O2-) and hydroxyl radicals (OH), and the intrinsic peroxidase-like activity can further induce the production of OH from external H2O2. Consequently, H2O2 concentration could decrease up to four magnitude orders with VOxNDs to achieve an antibacterial efficacy similar to that of H2O2 alone. Wound healing in vivo further confirms the high antibacterial efficiency, good biocompatibility, and application potential of the synergistic antibacterial system due to the "nano" structure of VOxNDs. The method of synthesis of nanodot antibacterials described in this paper is inexpensive, and the results of this study reveal the multi-enzymatic synergism of nanozymes.


Asunto(s)
Antibacterianos/química , Nanopartículas del Metal/química , Óxidos/química , Compuestos de Vanadio/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Materiales Biocompatibles/química , Materiales Biomiméticos/química , Catálisis , Supervivencia Celular/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Peroxidasas/metabolismo , Ratas Sprague-Dawley , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA