Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Small ; : e2403331, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898749

RESUMEN

Precise self-assembly of colloidal particles is crucial for understanding their aggregation properties and preparing macroscopic functional devices. It is currently very challenging to synthesize and self-assemble super-uniform covalent organic framework (COF) colloidal particles into well-organized multidimensional superstructures. Here, simple and versatile strategies are proposed for synthesis of super-uniform COF colloidal particles and self-assembly of them into 1D supraparticles, 2D ordered mono/multilayers, and 3D COF films. For this purpose, several self-assembly techniques are developed, including emulsion solvent evaporation, air-liquid interfacial self-assembly, and drop-casting. These strategies enable the superstructural self-assembly of particles of varying sizes and species without any additional surfactants or chemical modifications. The assembled superstructures maintain the porosity and high specific surface area of their building blocks. The feasibility of the strategies is examined with different types of COFs. This research provides a new approach for the controllable synthesis of super-uniform COF colloidal particles capable of self-assembling into multidimensional superstructures with long-range order. These discoveries hold great promise for the design of emerging multifunctional COF superstructures.

2.
Environ Sci Technol ; 58(18): 8009-8019, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38557036

RESUMEN

With the increasing use of metal-organic frameworks (MOFs), they will inevitably enter the environment intentionally or unintentionally. However, the effects of MOFs on plant growth are poorly understood. Here, we investigated the effects of exposure of the rhizosphere to MOFs on plant growth. MIL-101(Cr) was selected as a research model due to its commercial availability and wide use. Soybean plants at the two-leaf stage were subjected to various durations (1-7 days) and concentrations (0-1000 mg/L) of exposure in hydroculture with a control group treated with ultrapure water. We found that MIL-101(Cr) had a positive effect on soybean growth at a lower dose (i.e., 200 mg/L); however, at higher doses (i.e., 500 and 1000 mg/L), it exhibited significant toxicity to plant growth, which is evidenced by leaf damage. To investigate the mechanism of this effect, we used Cr as an indicator to quantify, track, and image MIL-101(Cr) in the plant with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Results indicated that MIL-101(Cr) primarily accumulated in the cortex of roots (up to 40 times higher than that in stems), with limited translocation to stems and negligible presence in leaves and cotyledons. In addition, metabolomic analysis of soybeans indicated that low-dose MIL-101(Cr) could increase the sucrose content of soybean roots to promote plant growth, while a high dose could induce lipid oxidation in roots. This study provides valuable insights into the ecological toxicology of MOFs and underscores the importance of assessing their environmental impact for sustainable agricultural practices.


Asunto(s)
Glycine max , Estructuras Metalorgánicas , Glycine max/efectos de los fármacos , Glycine max/crecimiento & desarrollo , Desarrollo de la Planta/efectos de los fármacos
3.
Analyst ; 146(9): 2991-2997, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33949450

RESUMEN

A spherical thiol-functionalized covalent organic framework (COF-SH) was designed via a facile thiol-yne click reaction of a alkynyl-terminated COF and pentaerythritol tetra(3-mercaptopropionate). The COF-SH was explored as a new adsorbent for the selective enrichment of Hg2+. The as-prepared COF-SH exhibited a uniform mesoporous structure, a high abundance of binding sites, and good chemical stability, which endow it with great performance for the adsorption of Hg2+ and its corresponding maximum adsorption capacity was up to 617.3 mg g-1. Furthermore, the adsorption behavior of Hg2+ on the COF-SH wasin good agreement with the Langmuir and pseudo-second-order models. The influences of adsorbent dosage, pH, selectivity, and reusability of the COF-SH on Hg2+ adsorption were also investigated. Besides this, the COF-SH showed high selectivity towards Hg2+ even in the presence of a high concentration of K+, Na+, Ca2+, Mg2+ and Zn2+ metal ions. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), the corresponding limit of detection (LOD) of Hg2+ was determined at very low concentrations of 80 pg mL-1 (equal to 396 amoL µL-1). In addition, the COF-SH was successfully applied to rapidly enrich and sensitively detect Hg2+ in industrial sewage, with recoveries in the range of 101.8-103.4%, demonstrating the promising potential of COF-SH as an effective adsorbent for use in environmental sample pretreatment.

4.
Mikrochim Acta ; 188(3): 91, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33598812

RESUMEN

Magnetic covalent organic frameworks (Fe3O4@TPPCl4) were synthesized via a one-pot process in which magnetic nanoparticles (Fe3O4@MNP) served as a magnetic core and 2,4,6-trihydroxy-1,3,5-benzenetricarbaldehyde (TP) and 2,2',5,5'-tetrachlorobenzidine (PCl4) as two building blocks to form a shell. The as-prepared Fe3O4@TPPCl4 nanoparticles have superior features, including large surface area (186.5 m2 g-1), high porosity, strong magnetic responsiveness (42.6 emu g-1), high chlorine content, and outstanding thermal stability, which make them an ideal adsorbent for highly selective enrichment of polychlorinated naphthalenes (PCNs). Combining with atmospheric pressure gas chromatography tandem mass spectrometry (APGC-MS/MS), a simple analytical method of Fe3O4@TPPCl4-based magnetic solid-phase extraction (MSPE)-APGC-MS/MS was developed, which exhibited good linearity (r ≥ 0.9991) for eight PCNs in the concentration range 0.1-100 ng L-1. Moreover, low detection limits (0.005-0.325 ng L-1), high enrichment factors (46.62-81.97-fold), and good relative standard deviations (RSDs) of inter-day (n = 3, 1.64 to 7.44%) and day-to-day (n = 3, 2.62 to 8.23%) were achieved. This method was successfully applied to the selective enrichment of PCNs in fine particulate matter (PM)2.5 samples, and ultra-trace PCNs were found in the range 1.56-3.75 ng kg-1 with satisfactory recoveries (93.11-105.81%). The successful application demonstrated the great potential of Fe3O4@TPPCl4 nanoparticles as an adsorbent for enrichment of halogenated compounds. Schematic presented one-pot synthesis of magnetic covalent organic framework nanocomposites (Fe3O4@TPPCl4) and their application in the selective enrichment of PCNs from PM2.5 prior to APGC-MS/MS analysis.

5.
Analyst ; 145(8): 3125-3130, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32163066

RESUMEN

A spherical vinyl-functionalized covalent-organic framework (COF-V) was prepared at room temperature by a facile method and applied as a novel substrate for surface-enhanced laser desorption/ionization mass spectrometry (SELDI-MS). Compared with conventional organic matrices, the spherical COF-V with high crystallinity and good monodispersity exhibited high sensitivity, no matrix background interference, wide-range applicability, high salt tolerance and reproducibility in the characterization of small molecules. Considering these advantages, the applicability of the spherical COF-V-based SELDI-MS method was successfully demonstrated by determining trace amounts of glucose in diabetic urine, which would be a promising candidate for clinical diagnosis of diabetes. In addition, the morphological effect and the desorption/ionization mechanism of the COF-V were investigated in detail and the results indicated that the spherical COF-V substrate could greatly enhance the LDI process compared with the bulk COF-V. This work not only extends the application of COFs in MS, but also offers a promising alternative for small molecule identification and clinical diagnosis of diabetes.


Asunto(s)
Estructuras Metalorgánicas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Diabetes Mellitus/diagnóstico , Contaminantes Ambientales/análisis , Glucosa/análisis , Glucosuria/diagnóstico , Humanos , Límite de Detección , Compuestos Orgánicos/análisis , Reproducibilidad de los Resultados
6.
Mikrochim Acta ; 187(7): 370, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32504203

RESUMEN

Core-shell structured magnetic covalent organic framework (Fe3O4@COF) nanospheres were rapidly synthesized at room temperature using the monodisperse Fe3O4 nanoparticles (NPs) as magnetic core and benzene-1,3,5-tricarbaldehyde (BTA) and 3,3'-dihydroxybenzidine (DHBD) as two building blocks (denoted as Fe3O4@BTA-DHBD), respectively. They can serve as a mass spectrometry probe for rapid and high-throughput screening of bisphenols (BPs) from pharmaceuticals and personal care products (PPCPs) by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS). The Fe3O4@BTA-DHBD nanospheres showed some superior features involving average pore size distribution (2.82 nm), high magnetization values (42.5 emu g-1), high specific surface area (82.96 m2 g-1), and good chemical/thermal stability. It was used as both ideal adsorbent for enrichment of BPs and new substrate to assist ionization in SELDI-TOF-MS. The method exhibited good linearity in the range 0.05-4000 ng mL-1 with correlation coefficients (r) higher than 0.9920. Low limits of detection (LODs) (500 pg mL-1 for bisphenol A (BPA), 2 pg mL-1 for bisphenol B (BPB), 28 pg mL-1 for bisphenol C (BPC), 60 pg mL-1 for bisphenol F (BPF), 33 pg mL-1 for bisphenol AF (BPAF), 200 pg mL-1 for bisphenol BP (BPBP), 10 pg mL-1 for bisphenol S (BPS), 90 pg mL-1 for tetrabromobisphenol A (BPA(Br)4), and 380 pg mL-1 for tetrabromobisphenol S (BPS(Br)4)) and good recoveries (80.6-115%) of BPs in PPCPs were achieved. The relative standard deviations (RSDs) of spot-to-spot (n = 10) and sample-to-sample (n = 5) were in the ranges 5-11% and 5-12%, respectively. The dual-function platform was successfully applied to the quantitative determination of BPs in PPCPs. It not only expanded the scope of the application of COFs but also provided an alternative strategy for the determination of hazardous compounds in PPCPs. Graphical abstract Schematic representation of the synthesis of core-shell structured magnetic covalent organic framework nanospheres (Fe3O4@COFs) and its application in the analysis of bisphenols by using Fe3O4@BTA-DHBD nanospheres as a MS probe based on surface-enhanced laser desorption/ionization time-of-flight mass spectrometry.

7.
J Am Chem Soc ; 141(45): 18271-18277, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31656073

RESUMEN

Covalent organic frameworks (COFs) represent a new class of porous crystalline polymers with a diversity of applications. However, synthesis of uniform spherical COFs poses a great challenge. Here, we present size-controllable synthesis of uniform spherical COFs from nanometer to micrometer scale by a facile approach at room temperature. The as-prepared spherical COFs with different sizes exhibited ultrahigh surface area, good crystallinity, and chemical/thermal stability. Multifarious microscopic and spectroscopic techniques were performed to understand the formation mechanism and influencing factors of the spherical COFs. Moreover, the general applicability for room-temperature synthesis of the spherical COFs was demonstrated by varying different building blocks. Spherical COFs, because of the advantageous nature of their surface area, hydrophobicity, and mesoporous microenvironment, serve as an attractive restricted-access adsorption material for highly selective and efficient enrichment of hydrophobic peptides and size exclusion of macromolecular proteins simultaneously. On this basis, the spherical COFs were successfully applied to the specific capture of ultratrace C-peptide from human serum and urine samples. This research provides a new strategy for room-temperature controllable synthesis of uniform spherical COFs with different sizes and extends the application of COFs as an attractive sample-enrichment probe for clinical analysis.


Asunto(s)
Péptido C/aislamiento & purificación , Estructuras Metalorgánicas/química , Adsorción , Péptido C/sangre , Péptido C/química , Péptido C/orina , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Estructuras Metalorgánicas/síntesis química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
J Chromatogr A ; 1726: 464961, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723491

RESUMEN

The improvement of the stability and adsorption properties of materials on targets in sample pre-treatment has long been an objective. Extensive efforts have been made to achieve this goal. In this work, metal-organic framework Ni-MOF precursors were first synthesized by solvothermal method using polyvinylpyrrolidone (PVP) as an ideal templating agent, stabiliser and nanoparticle dispersant. After carbonization and acid washing, the nanoporous carbon microspheres material (Ni@C-acid) was obtained. Compared with the material without acid treatment (Ni@C), the specific surface area, pore volume, adsorption performance of Ni@C-acid were increased. Thanks to its excellent characteristics (high stability, abundant benzene rings), Ni@C-acid was used as fiber coatings in headspace solid-phase microextraction (HS-SPME) technology for extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) prior to gas chromatography-flame ionization detector (GC-FID) analysis. The experimental parameters of extraction temperature, extraction time, agitation speed, desorption temperature, desorption time and sodium chloride (NaCl) concentration were studied. Under optimal experimental conditions, the wide linear range (0.01-30 ng mL-1), the good correlation coefficient (0.9916-0.9984), the low detection limit (0.003-0.011 ng mL-1), and the high enrichment factor (5273-13793) were obtained. The established method was successfully used for the detection of trace PAHs in actual tea infusions samples and satisfied recoveries ranging from 80.94-118.62 % were achieved. The present work provides a simple method for the preparation of highly stable and adsorbable porous carbon microsphere materials with potential applications in the extraction of environmental pollutants.


Asunto(s)
Carbono , Límite de Detección , Estructuras Metalorgánicas , Microesferas , Hidrocarburos Policíclicos Aromáticos , Microextracción en Fase Sólida , , Microextracción en Fase Sólida/métodos , Hidrocarburos Policíclicos Aromáticos/aislamiento & purificación , Hidrocarburos Policíclicos Aromáticos/análisis , Té/química , Carbono/química , Estructuras Metalorgánicas/química , Porosidad , Adsorción , Níquel/química , Níquel/aislamiento & purificación , Cromatografía de Gases/métodos , Reproducibilidad de los Resultados
9.
Chem Sci ; 15(10): 3698-3706, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38455012

RESUMEN

The widespread application of metal-organic frameworks (MOFs) is seriously hindered by their structural instability and it is still very challenging to probe the stability of MOFs during application by current techniques. Here, we report a novel structure-responsive mass spectrometry (SRMS) imaging technique to probe the stability of MOFs. We discovered that intact CuBTC (as a model of MOFs) could generate the characteristic peaks of organic ligands and carbon cluster anions in laser desorption/ionization mass spectrometry, but these peaks were significantly changed when the structure of CuBTC was dissociated, thus enabling a label-free probing of the stability. Furthermore, SRMS can be performed in imaging mode to visualize the degradation kinetics and reveal the spatial heterogeneity of the stability of CuBTC. This technique was successfully applied in different application scenarios (in water, moist air, and CO2) and also validated with different MOFs. It thus provides a versatile new tool for better design and application of environment-sensitive materials.

10.
Se Pu ; 40(7): 600-609, 2022 Jul.
Artículo en Zh | MEDLINE | ID: mdl-35791598

RESUMEN

Toxic and hazardous substances constitute a category of compounds that are potentially hazardous to humans, other organisms, and the environment. These substances include pesticides (benzoylureas, pyrethroids, neonicotinoids), persistent organic pollutants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, perfluorinated compounds), plasticizers (phthalate esters, phenolic endocrine disruptors), medicines (sulfonamides, non-steroid anti-inflammatory drugs, tetracyclines, fluoroquinone antibiotics), heterocyclic aromatic amines, algal toxins, and radioactive substances. Discharge of these toxic and harmful substances, as well as their possible persistence and bioaccumulation, pose a major risk to human health, often to the extent of being life-threatening. Therefore, it is important to analyze and detect toxic and hazardous substances in the environment, drinking water, food, and daily commodities. Sample pretreatment is an imperative step in most of the currently used analytical methods, especially in the analysis of trace toxic and harmful substances in complex samples. An efficient and fast sample pretreatment technology not only helps improve the sensitivity, selectivity, reproducibility, and accuracy of analytical methods, but also avoids contamination of the analytical instruments and even damages the performance and working life of instruments. Sample pretreatment techniques widely used in the extraction of toxic and hazardous substances include solid-phase extraction (SPE), solid-phase microextraction (SPME), and dispersed solid-phase extraction (DSPE). The adsorbent material plays a key role in these pretreatment techniques, thereby determining their selectivity and efficiency. In recent years, covalent organic frameworks (COFs) have attracted increasing attention in sample pretreatment. COFs represent an exciting new class of porous crystalline materials constructed via the strong covalent bonding of organic building units through a reversible condensation reaction. COFs present four advantages: (1) precise control over structure type and pore size by consideration of the target molecular structure based on the connectivity and shape of the building units; (2) post-synthetic modification for chemical optimization of the pore interior toward optimized interaction with the target; (3) straightforward scalable synthesis; (4) feasible formation of composites with magnetic nanoparticles, carbon nanotubes, graphene, silica, etc., which is beneficial to enhance the performance of COFs and meet the requirement of diverse pretreatment technologies. Because of the well-defined crystalline porous structures and tailored functionalities, COFs have excellent potential for use in target extraction. However, some issues need to be addressed for the application of COFs in the extraction of toxic and hazardous substances. (1) For the sample matrix, most of the reported COFs are highly hydrophobic, which limits their dispersibility in water-based samples, leading to poor extraction performance. COFs with good dispersibility in water-based samples are urgently required. (2) Besides, COFs rely on hydrophobic interaction, size repulsion, π-π stacking, and Van der Waals forces to extract target substances, but they are not effective for some polar targets. Thus, it is necessary to develop COFs with high affinity for polar toxic and hazardous substances. (3) Methods for the synthesis of COFs have evolved from solvothermal methods to room-temperature methods, mechanical grinding, microwave-assisted synthesis, ion thermal methods, etc. Most of the existing methods are time-consuming, laborious, and environmentally unfriendly. The starting materials are too expensive to prepare COFs in large quantities. More effort is required to improve the synthesis efficiency and overcome the obstacles in the application of COFs for extraction. This article summarizes and reviews the research progress in COFs toward the extraction of toxic and hazardous substances in recent years. Finally, the application prospects of COFs in this field are summarized, which serves as a reference for further research into pretreatment technologies based on COFs.


Asunto(s)
Estructuras Metalorgánicas , Nanotubos de Carbono , Sustancias Peligrosas , Humanos , Estructuras Metalorgánicas/química , Reproducibilidad de los Resultados , Agua
11.
Talanta ; 243: 123380, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35334434

RESUMEN

Rapid and convenient preparation of covalent organic framework (COF) coated fibers is of great significance to solid-phase microextraction (SPME) technology. In this work, a novel chemical preparation strategy was established for rapid fabrication of ß-ketoenamine-linked COF coatings, in which clay-like starting materials of COFs were first wrapped on the fiber surface through self-viscosity and further fixed on the fiber in an oven via chemical bonding. Based on this strategy, four different COF (TpTph, TpPa-1, TpBD and TpTpb) coated fibers was fabricated within 1 h, which is very rapid compared to the recently reported research. Moreover, the strategy also demonstrates the good general applicability for COF fiber preparation. Subsequently, the TpTph coated fiber was used to develop a new SPME method for gas chromatography-tandem mass spectrometry (GC-MS/MS) of trace phthalic acid esters (PAEs) in environmental water. The developed analytical method compared to the previous SPME methods for PAEs based on other sorbents possesses low limits of detection (LODs, 0.02-0.08 ng L-1), and better or comparable precision (RSD ≤9.4%, n = 6), and relatively short extraction time. Furthermore, the trace PAEs (0.27-11.62 ng L-1) in the real water samples were successfully detected with recoveries of 82.2-117.5%. The above results indicates that the proposed fiber preparation strategy is reliable and opens a potential avenue for rapid and facile fabrication of COF coated fibers.


Asunto(s)
Estructuras Metalorgánicas , Ácidos Ftálicos , Ésteres/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Límite de Detección , Estructuras Metalorgánicas/química , Ácidos Ftálicos/análisis , Microextracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos
12.
J Hazard Mater ; 411: 125190, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-33858120

RESUMEN

Frequent oil-spill accidents not only cause serious and long-term damage to marine ecosystems, but also lead to a huge loss of valuable natural resources. To lighten the environmental pollution of oil spills as quickly as possible, an efficient and environment-friendly approach for oil-water separation is highly desirable. Herein, a facile one-pot room-temperature approach was developed for large-scale fabrication of covalent organic framework-coated superhydrophobic sponges (sponges@COFs). The as-prepared sponges@COFs possessed many superior properties, including superhydrophobicity with the water contact angle of approximately 154.3°, large specific surface area (153.059 m2/g), high porosity of the network structures, as well as good mechanical and chemical stability. Taking the aformentioned advantages together, the superhydrophobic sponges showed ultra-high adsorption capacity for oil and various organic solvents. In comparision with its own weight, the adsorption amount of the sponges@COFs for silicone oil was up to 150 times and for toluene was 125 times, respectively. Furthermore, the superhydrophobic sponges also showed fast and highly efficient oil-water separation, outstanding flame retardancy and recyclability. In addition, the sponges@COFs were successfully applied to the high-efficiency removal of oil suspension from industrial waste water, firmly confirming their application prospect in industrial wastewater treatment.

13.
Talanta ; 221: 121651, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33076167

RESUMEN

Polybrominated diphenyl ethers (PBDEs), known as the most widely used brominated flame retardant, have received great public concern due to its hidden environment and health problems. Development of highly selective and sensitive analytical approaches for enrichment and detection of ultratrace PBDEs are in high demand. Conventional sample pretreatment techniques usually require tedious procedures, long time, and excessive consumption of solvent and sample, thus hindering ultrasensitive detection of PBDEs. To address this issue, we first reported a simple room-temperature approach for synthesis of tubular magnetic fluorinated covalent organic frameworks (MCNT@TAPB-TFTA). The introduction of fluorine atoms played multiple roles in improving the frameworks' hydrophobicity and the adsorption capabilities for PBDEs. Combined with atmospheric pressure gas chromatography-tandem mass spectrometry (APGC-MS/MS), several crucial parameters of magnetic solid-phase extraction (MSPE) including adsorbent dosage, adsorption time, pH, ion strength, the eluent, elution time and elution frequencies were examined in detail. The optimal method exhibited wide linear ranges (0.01-500 ng/L), low limit of detections (LODs, 0.0045-0.018 ng/L), good correlation coefficients (r ≥ 0.9977), and high enrichment factors (EFs, 1425-1886 folds) for eight PBDEs. Furthermore, this proposed method could be successfully applied to sensitive determination of ultratrace PBDEs in environmental samples, demonstrating the promising potential of the MCNT@TPAB-TFTA as an adsorbent in sample pretreatment.

14.
ACS Appl Mater Interfaces ; 13(41): 49482-49489, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34636536

RESUMEN

Although organic artificial enzymes have been reported as biomimetic oxidation catalysts and are widely used for colorimetric biosensors, developing organic artificial enzymes with high enzymatic activity is still a challenge. Two-dimensional (2D) covalent organic frameworks (COFs) have shown superior potential in biocatalysts because of their periodic π-π arrays, tunable pore size and structure, large surface area, and thermal stability. The interconnection of electron acceptor and donor building blocks in the 2D conjugated COF skeleton can lead to narrower band gaps and efficient charge separation and transportation and thus is helpful to improve catalytic activity. Herein, a donor-acceptor 2D COF was synthesized using tetrakis(4-aminophenyl)pyrene (Py) as an electron donor and thieno[3,2-b]thiophene-2,5-dicarbaldehyde (TT) as an electron acceptor. Under visible light irradiation, the donor-acceptor 2D COF exhibited superior enzymatic catalytic activity, which could catalyze the oxidation of chromogenic substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) by the formation of superoxide radicals and holes. Based on the above property, the photoactivated donor-acceptor 2D COF with enzyme-like catalytic properties was designed as a robust colorimetric probe for cheap, highly sensitive, and rapid colorimetric detection of glutathione (GSH); the corresponding linear range of GSH was 0.4-60 µM, and the limit of detection was 0.225 µM. This study not only presents the construction of COF-based light-activated nanozymes for environmentally friendly colorimetric detection of GSH but also provides a smart strategy for improving nanozyme activity.


Asunto(s)
Glutatión/sangre , Estructuras Metalorgánicas/química , Nanoestructuras/química , Bencidinas/química , Catálisis/efectos de la radiación , Compuestos Cromogénicos/química , Colorimetría/métodos , Teoría Funcional de la Densidad , Glutatión/química , Humanos , Luz , Límite de Detección , Estructuras Metalorgánicas/síntesis química , Estructuras Metalorgánicas/efectos de la radiación , Modelos Químicos , Nanoestructuras/efectos de la radiación , Oxidación-Reducción , Pirenos/síntesis química , Pirenos/química , Pirenos/efectos de la radiación , Tiofenos/síntesis química , Tiofenos/química , Tiofenos/efectos de la radiación
15.
Chem Commun (Camb) ; 57(61): 7501-7504, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34259250

RESUMEN

Micron-sized spherical covalent organic frameworks (SCOFs) with tunable sizes, narrow size distribution, and significant mono-dispersity were simply synthesized at room temperature. Thanks to their high specific surface areas, high chemical and mechanical stability, the SCOFs were used for the first time as stationary phases for high-efficiency separation of various small molecules and protein digests via short-column liquid chromatography.

16.
Anal Chim Acta ; 1181: 338886, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34556223

RESUMEN

A facile and rapid strategy for preparation of covalent organic framework (COF) coated fibers at ambient temperature is urgently needed for solid-phase microextraction (SPME) technology. In this work, an in situ room-temperature rapid growth strategy was developed to high-efficiently fabricate imine-linked COF (TPB-DVA) coated fibers in as little as 30 min at room temperature, and the thickness of the coating reached 9 µm. The prepared TPB-DVA coated fiber offer high thermal and chemical stability, and outstanding service lifetime. Moreover, we generalize this strategy to other two imine-linked COF (TPB-DMTP and TFPB-TAPB) coated fibers and the fibers were fabricated at room temperature for 3 h and 12 h, respectively, which demonstrate the applicability of this strategy. Subsequently, a SPME-GC-MS/MS analytical method was developed for trace pyrethroids (PYs) detection, which exhibited high enhancement factors (EFs, 2700-13195), wide linear range (0.08-800 ng L-1), low limits of detection (LODs, 0.02-0.20 ng L-1), and good repeatability (RSD ≤ 8.5%, n = 6). Furthermore, the developed analytical method was applied to tea samples and trace PYs (1.31-4.32 ng L-1) were found with satisfactory recovery (80.2-119.8%). The above results demonstrated that the feasibility of the developed strategy for the facile and rapid fabrication of imine-linked COF coated fibers.


Asunto(s)
Estructuras Metalorgánicas , Piretrinas , Contaminantes Químicos del Agua , Iminas , Límite de Detección , Microextracción en Fase Sólida , Espectrometría de Masas en Tándem , Temperatura , Contaminantes Químicos del Agua/análisis
17.
Chem Commun (Camb) ; 57(60): 7362-7365, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34196343

RESUMEN

A facile strategy was introduced for room-temperature controllable synthesis of hierarchically flower-like hollow COFs (FHF-COFs). Furthermore, the universality for synthesis of the HFH-COFs was validated by altering the building units. Inspired by the unique morphology, extremely large surface area and good chemical stability, HFH-COFs could serve as an attractive adsorption probe by loading with gold nanoparticles and be applied to enrichment of brain natriuretic peptide from human serum. This work opens up a whole new approach for controllable synthesis of the HFH-COFs at room temperature and expands the application of COFs as a promising enrichment probe for complex biological samples.


Asunto(s)
Estructuras Metalorgánicas/química , Péptido Natriurético Encefálico/aislamiento & purificación , Adsorción , Oro/química , Humanos , Límite de Detección , Nanopartículas del Metal/química , Estructuras Metalorgánicas/síntesis química , Péptido Natriurético Encefálico/sangre , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
ACS Appl Mater Interfaces ; 13(44): 52417-52424, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34723457

RESUMEN

Despite great achievement that has been made in the synthesis of covalent organic frameworks (COFs), precise construction of COFs with well-defined nano/microstructures poses a rigorous challenge. Herein, we introduce a simple template-free strategy for controllable synthesis of hollow microtubular COFs. The obtained COFs show a spontaneous morphology transformation from a microfiber to a hollow microtubular structure when the concentrations of catalytic acid are regulated elaborately. Furthermore, the as-prepared COFs exhibit high crystallinity, well-defined hollow tubular morphology, and high surface areas (∼2600 m2/g). Taking the advantages of the unique morphological structure, the hollow microtubular COFs can serve as an ideal host material for enzymes. The resultant biocomposites show high catalytic performance and can be successfully applied to rapid and high-efficiency proteolysis of proteins. This work blazes a trail for controllable synthesis of the hollow microtubular COFs through a template-free process and expands the application of COFs as a promising platform for enzyme immobilization.

19.
Sci Total Environ ; 713: 136602, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31955098

RESUMEN

In this study, the response of methane (CH4) production to the addition of titanium dioxide nanoparticles (TiO2 NPs) with three types of short-chain fatty acids (sodium acetate, sodium propionate and sodium butyrate) as carbon sources in mangrove sediment was investigated. The results showed that the maximum CH4 formation rate increased by 45.2%, 32.7% and 48.6% and the maximum cumulative CH4 production increased by 25.2%, 7.7% and 6.3% with the addition of TiO2 NPs in the sodium acetate, sodium propionate and sodium butyrate systems, respectively. The microbial community analysis revealed that the electrogenic bacteria Proteiniclasticum and Pseudomonas, butyrate oxidizing bacteria Syntrophomonas and methanogens Methanobacterium and Methanosarcina were significantly enriched in the presence of TiO2 NPs, indicating that TiO2 NPs can enhance CH4 production by stimulating the growth of different species of methanogens and butyrate oxidizing bacteria. The enlarged distance between microbes, the enhanced conductivity of the sediment and the typical microorganisms for direct interspecies electron transfer (DIET) with the addition of TiO2 NPs suggest that the promoted DIET between distinct microorganisms could be another possible explanation for the improvement in CH4 production. It can be speculated that a weaker effect on methanogenesis increases under the natural concentration of TiO2 NPs compared with the experimental conditions; however, the amounts of TiO2 NPs are increasing enriched in wetland environments. Therefore, the findings of this study increase current knowledge about the effect of nanomaterials on global CH4 emissions and suggest that the discharge of wastewater containing TiO2 NPs from the synthesis and incorporation of TiO2 NPs in customer products needs to be monitored.


Asunto(s)
Nanopartículas del Metal , Methanosarcina , Sedimentos Geológicos , Metano , Titanio , Humedales
20.
Asian J Surg ; 47(4): 1791-1792, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148262
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA