RESUMEN
The canonical glycolysis pathway is responsible for converting glucose into 2 molecules of acetyl-coenzyme A (acetyl-CoA) through a cascade of 11 biochemical reactions. Here, we have designed and constructed an artificial phosphoketolase (APK) pathway, which consists of only 3 types of biochemical reactions. The core enzyme in this pathway is phosphoketolase, while phosphatase and isomerase act as auxiliary enzymes. The APK pathway has the potential to achieve a 100% carbon yield to acetyl-CoA from any monosaccharide by integrating a one-carbon condensation reaction. We tested the APK pathway in vitro, demonstrating that it could efficiently catabolize typical C1-C6 carbohydrates to acetyl-CoA with yields ranging from 83% to 95%. Furthermore, we engineered Escherichia coli stain capable of growth utilizing APK pathway when glycerol act as a carbon source. This novel catabolic pathway holds promising route for future biomanufacturing and offering a stoichiometric production platform using multiple carbon sources.
Asunto(s)
Aldehído-Liasas , Carbono , Acetilcoenzima A , Carbono/metabolismo , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Glucosa/metabolismo , Ingeniería MetabólicaRESUMEN
BACKGROUND: Seven-carbon sugars, which rarely exist in nature, are the key constitutional unit of septacidin and hygromycin B in bacteria. These sugars exhibit a potential therapeutic effect for hypoglycaemia and cancer and serve as building blocks for the synthesis of C-glycosides and novel antibiotics. However, chemical and enzymatic approaches for the synthesis of seven-carbon sugars have faced challenges, such as complex reaction steps, low overall yields and high-cost feedstock, limiting their industrial-scale production. RESULTS: In this work, we propose a strain engineering approach for synthesising sedoheptulose using glucose as sole feedstock. The gene pfkA encoding 6-phosphofructokinase in Corynebacterium glutamicum was inactivated to direct the carbon flux towards the pentose phosphate pathway in the cellular metabolic network. This genetic modification successfully enabled the synthesis of sedoheptulose from glucose. Additionally, we identified key enzymes responsible for product formation through transcriptome analysis, and their corresponding genes were overexpressed, resulting in a further 20% increase in sedoheptulose production. CONCLUSION: We achieved a sedoheptulose concentration of 24 g/L with a yield of 0.4 g/g glucose in a 1 L fermenter, marking the highest value up to date. The produced sedoheptulose could further function as feedstock for synthesising structural seven-carbon sugars through coupling with enzymatic isomerisation, epimerisation and reduction reactions.
Asunto(s)
Corynebacterium glutamicum , Glucosa , Heptosas , Ingeniería Metabólica , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/enzimología , Ingeniería Metabólica/métodos , Heptosas/biosíntesis , Heptosas/metabolismo , Glucosa/metabolismo , Vía de Pentosa Fosfato , FermentaciónRESUMEN
AIM: Strain analysis offers a valuable tool to assess myocardial mechanics, allowing for the detection of impairments in heart function. This study aims to evaluate the pattern of myocardial strain in patients with heart failure (HF). METHODS: In the present study, myocardial strain was measured by cardiac magnetic resonance imaging feature tracking in 35 control subjects without HF and 195 HF patients. The HF patients were further categorized as HF with preserved ejection fraction (HFpEF, n=80), with mid-range ejection fraction (HFmrEF, n=34), and with reduced ejection fraction (HFrEF, n=81). Additionally, quantitative tissue evaluation parameters, including native T1 relaxation time and extracellular volume (ECV), were examined. RESULTS: Compared to controls, patients in all HF groups (HFpEF, HFmrEF, and HFrEF) demonstrated impaired left ventricular (LV) strains and systolic and diastolic strain rates in all three directions (radial, circumferential, and longitudinal) (p < 0.05 for all). LV strains also showed significant correlations with left ventricular ejection fraction and brain natriuretic peptide levels (p < 0.001 for all). Notably, septal contraction was significantly affected in HFpEF compared to controls. While LV torsion was slightly increased in HFpEF, it was decreased in HFrEF. Native T1 relaxation times and ECV fractions were significantly higher in HFrEF compared to HFpEF (p < 0.05). Overall, myocardial strain parameters demonstrated good performance in differentiating HF categories. CONCLUSIONS: The myocardial strain impairments exhibit a spectrum of severity in patients with HFpEF, HFmrEF, and HFrEF compared to controls. Assessment of myocardial mechanics using strain analysis may offer a clinically useful tool for monitoring the progression of systolic and diastolic dysfunction in HF patients.
RESUMEN
CRISPR base editing techniques tend to edit multiple bases in the targeted region, which is a limitation for precisely reverting disease-associated single-nucleotide polymorphisms (SNPs). We designed an imperfect gRNA (igRNA) editing methodology, which utilized a gRNA with one or more bases that were not complementary to the target locus to direct base editing toward the generation of a single-base edited product. Base editing experiments illustrated that igRNA editing with CBEs greatly increased the single-base editing fraction relative to normal gRNA editing with increased editing efficiencies. Similar results were obtained with an adenine base editor (ABE). At loci such as DNMT3B, NSD1, PSMB2, VIATA hs267 and ANO5, near-perfect single-base editing was achieved. Normally an igRNA with good single-base editing efficiency could be selected from a set of a few igRNAs, with a simple protocol. As a proof-of-concept, igRNAs were used in the research to construct cell lines of disease-associated SNP causing primary hyperoxaluria construction research. This work provides a simple strategy to achieve single-base base editing with both ABEs and CBEs and overcomes a key obstacle that limits the use of base editors in treating SNP-associated diseases or creating disease-associated SNP-harboring cell lines and animal models.
Asunto(s)
Edición Génica , ARN Guía de Kinetoplastida , Adenina/metabolismo , Animales , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , ARN Guía de Kinetoplastida/genéticaRESUMEN
BACKGROUND: Halophiles possess several unique properties and have broad biotechnological applications including industrial biotechnology production. Halomonas spp., especially Halomonas bluephagenesis, have been engineered to produce various biopolyesters such as polyhydroxyalkanoates (PHA), some proteins, small molecular compounds, organic acids, and has the potential to become a chassis cell for the next-generation of industrial biotechnology (NGIB) owing to its simple culture, fast growth, contamination-resistant, low production cost, and high production value. An efficient genome editing system is the key for its engineering and application. However, the efficiency of the established CRISPR-Cas-homologous recombination (HR) gene editing tool for large DNA fragments was still relatively low. In this study, we firstly report a CRISPR-Cas9 gene editing system combined with a non-homologous end joining (NHEJ) repair system for efficient large DNA fragment deletion in Halomonas bluephagenesis. RESULTS: Three different NHEJ repair systems were selected and functionally identified in Halomonas bluephagenesis TD01. The NHEJ system from M. tuberculosis H37Rv (Mt-NHEJ) can functionally work in H. bluephagenesis TD01, resulting in base deletion of different lengths for different genes and some random base insertions. Factors affecting knockout efficiencies, such as the number and position of sgRNAs on the DNA double-strands, the Cas9 protein promoter, and the interaction between the HR and the NHEJ repair system, were further investigated. Finally, the optimized CRISPR-Cas9-NHEJ editing system was able to delete DNA fragments up to 50 kb rapidly with high efficiency of 31.3%, when three sgRNAs on the Crick/Watson/Watson DNA double-strands and the arabinose-induced promoter Para for Cas9 were used, along with the background expression of the HR repair system. CONCLUSIONS: This was the first report of CRISPR-Cas9 gene editing system combined with a non-homologous end joining (NHEJ) repair system for efficient large DNA fragment deletion in Halomonas spp. These results not only suggest that this editing system is a powerful genome engineering tool for constructing chassis cells in Halomonas, but also extend the application of the NHEJ repair system.
Asunto(s)
Edición Génica , Halomonas , Sistemas CRISPR-Cas , Halomonas/genética , ARN Guía de Sistemas CRISPR-Cas , ADNRESUMEN
Phytochemicals are rich resources for pharmaceutical and nutraceutical agents. A key challenge of accessing these precious compounds can present significant bottlenecks for development. The cinnamyl alcohol disaccharides also known as rosavins are the major bioactive ingredients of the notable medicinal plant Rhodiola rosea L. Cinnamyl-(6'-O-ß-xylopyranosyl)-O-ß-glucopyranoside (rosavin E) is a natural rosavin analogue with the arabinopyranose unit being replaced by its diastereomer xylose, which was only isolated in minute quantity from R. rosea. Herein, we described the de novo production of rosavin E in Escherichia coli. The 1,6-glucosyltransferase CaUGT3 was engineered into a xylosyltransferase converting cinnamyl alcohol monoglucoside (rosin) into rosavin E by replacing the residue T145 with valine. The enzyme activity was further elevated 2.9 times by adding the mutation N375Q. The synthesis of rosavin E from glucose was achieved with a titer of 92.9 mg/L by combining the variant CaUGT3T145V/N375Q, the UDP-xylose synthase from Sinorhizobium meliloti 1021 (SmUXS) and enzymes for rosin biosynthesis into a phenylalanine overproducing E. coli strain. The production of rosavin E was further elevated by co-overexpressing UDP-xylose synthase from Arabidopsis thaliana (AtUXS3) and SmUXS, and the titer in a 5 L bioreactor with fed-batch fermentation reached 782.0 mg/L. This work represents an excellent example of producing a natural product with a disaccharide chain by glycosyltransferase engineering and artificial pathway construction.
Asunto(s)
Productos Biológicos , Escherichia coli , Productos Biológicos/metabolismo , Disacáridos/química , Disacáridos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismoRESUMEN
A novel bacterial strain, CH91, was isolated from a high-temperature oil reservoir. Morphological characterization, phylogenetic analyses of 16S rRNA gene sequence and genome relatedness indicated that the strain is a potential new species in the genus Rhodococcus. Strain CH91 could grow in the temperature range of 25-50 °C (optimally at 37 °C) and utilize a broad range of long-chain n-alkanes from hexadecane to hexatriacontane. The utilization of the n-alkanes mixture of strain CH91 revealed that the degradation rate was correlated to the length of the carbon chain. Two novel alkB genes encoding alkane 1-monooxygenase were found in the genome of this strain. The protein sequences of both alkane 1-monooxygenases showed a remarkable phylogenetic distance to other reported AlkB protein sequences. These results would help broaden our knowledge about alkane degradation by Rhodocuccus and its potential ecological role. The ability of the strain in the long-chain alkane degradation and thermal tolerance could also be further exploited for bioremediation of oil contaminations and microbial enhanced oil recovery.
Asunto(s)
Rhodococcus , Alcanos/metabolismo , Biodegradación Ambiental , Citocromo P-450 CYP4A/genética , Filogenia , ARN Ribosómico 16S/genética , Rhodococcus/genética , Rhodococcus/metabolismo , Análisis de Secuencia de ADNRESUMEN
Alkaline pectate lyases have biotechnological applications in plant fiber processing, such as ramie degumming. Previously, we characterized an alkaline pectate lyase from Bacillus clausii S10, named BacPelA, which showed potential for enzymatic ramie degumming because of its high cleavage activity toward methylated pectins in alkaline conditions. However, BacPelA displayed poor thermo-alkaline stability. Here, we report the 1.78 Å resolution crystal structure of BacPelA in apo form. The enzyme has the characteristic right-handed ß-helix fold of members of the polysaccharide lyase 1 family and shows overall structural similarity to them, but it displays some differences in the details of the secondary structure and Ca2+-binding site. On the basis of the structure, 10 sites located in flexible regions and showing high B-factor and positive ΔTm values were selected for mutation, aiming to improve the thermo-alkaline stability of the enzyme. Following site-directed saturation mutagenesis and screening, mutants A238C, R150G, and R216H showed an increase in the T5015 value at pH 10.0 of 3.0 °C, 6.5 °C, and 7.0 °C, respectively, compared with the wild-type enzyme, interestingly accompanied by a 24.5%, 46.6%, and 61.9% increase in activity. The combined mutant R150G/R216H/A238C showed an 8.5 °C increase in the T5015 value at pH 10.0, and an 86.1% increase in the specific activity at 60 °C, with approximately doubled catalytic efficiency, compared with the wild-type enzyme. Moreover, this mutant retained 86.2% activity after incubation in ramie degumming conditions (4 h, 60 °C, pH 10.0), compared with only 3.4% for wild-type BacPelA. The combined mutant increased the weight loss of ramie fibers in degumming by 30.2% compared with wild-type BacPelA. This work provides a thermo-alkaline stable, highly active pectate lyase with great potential for application in the textile industry, and also illustrates an effective strategy for rational design and improvement of pectate lyases.
Asunto(s)
Boehmeria , Boehmeria/química , Polisacárido Liasas/genética , Polisacárido Liasas/química , Pectinas/química , Biotecnología , Concentración de Iones de HidrógenoRESUMEN
The chiral N-substituted 1,2-amino alcohol motif is found in many natural and synthetic bioactive compounds. In this study, enzymatic asymmetric reductive amination of α-hydroxymethyl ketones with enantiocomplementary imine reductases (IREDs) enabled the synthesis of chiral N-substituted 1,2-amino alcohols with excellent ee values (91-99 %) in moderate to high yields (41-84 %). Furthermore, a one-pot, two-step enzymatic process involving benzaldehyde lyase-catalyzed hydroxymethylation of aldehydes and subsequent asymmetric reductive amination was developed, offering an environmentally friendly and economical way to produce N-substituted 1,2-amino alcohols from readily available simple aldehydes and amines. This methodology was then applied to rapidly access a key synthetic intermediate of anti-malaria and cytotoxic tetrahydroquinoline alkaloids.
Asunto(s)
Aminas , Amino Alcoholes , Aldehídos , Aminación , EstereoisomerismoRESUMEN
When dealing with computed tomography volume data, the accurate segmentation of lung nodules is of great importance to lung cancer analysis and diagnosis, being a vital part of computer-aided diagnosis systems. However, due to the variety of lung nodules and the similarity of visual characteristics for nodules and their surroundings, robust segmentation of nodules becomes a challenging problem. A segmentation algorithm based on the fast marching method is proposed that separates the image into regions with similar features, which are then merged by combining regions growing with k-means. An evaluation was performed with two distinct methods (objective and subjective) that were applied on two different datasets, containing simulation data generated for this study and real patient data, respectively. The objective experimental results show that the proposed technique can accurately segment nodules, especially in solid cases, given the mean Dice scores of 0.933 and 0.901 for round and irregular nodules. For non-solid and cavitary nodules the performance dropped-0.799 and 0.614 mean Dice scores, respectively. The proposed method was compared to active contour models and to two modern deep learning networks. It reached better overall accuracy than active contour models, having comparable results to DBResNet but lesser accuracy than 3D-UNet. The results show promise for the proposed method in computer-aided diagnosis applications.
RESUMEN
Lactic acid (LA) is an important organic acid with broad industrial applications. Considered as an environmentally friendly alternative to petroleum-based plastic with a wide range of applications, polylactic acid has generated a great deal of interest and therefore the demand for optically pure l- or d-lactic acid has increased accordingly. Microbial fermentation is the industrial route for LA production. LA bacteria and certain genetic engineering bacteria are widely used for LA production. Although some fungi, such as Saccharomyces cerevisiae, are not natural LA producers, they have recently received increased attention for LA production because of their acid tolerance. The main challenge for LA bioproduction is the high cost of substrates. The development of LA production from cost-effective biomasses is a potential solution to reduce the cost of LA production. This review examined and discussed recent progress in optically pure l-lactic acid and optically pure d-lactic acid fermentation. The utilization of inexpensive substrates is also focused on. Additionally, for PLA production, a complete biological process by one-step fermentation from renewable resources is also currently being developed by metabolically engineered bacteria. We also summarize the strategies and procedures for metabolically engineering microorganisms producing PLA. In addition, there exists some challenges to efficiently produce PLA, therefore strategies to overcome these challenges through metabolic engineering combined with enzyme engineering are also discussed.
Asunto(s)
Desarrollo de Medicamentos , Ácido Láctico/metabolismo , Poliésteres/metabolismo , Ácido Láctico/química , Ingeniería Metabólica , Poliésteres/químicaRESUMEN
Starch/cellulose has become the major feedstock for manufacturing biofuels and biochemicals because of their abundance and sustainability. In this study, we presented an artificially designed "starch-mannose-fermentation" biotransformation process through coupling the advantages of in vivo and in vitro metabolic engineering strategies together. Starch was initially converted into mannose via an in vitro metabolic engineering biosystem, and then mannose was fermented by engineered microorganisms for biomanufacturing valuable mannosyl compounds. The in vitro metabolic engineering biosystem based on phosphorylation/dephosphorylation reactions was thermodynamically favorable and the conversion rate reached 81%. The mannose production using whole-cell biocatalysts reached 75.4 g/L in a 30-L reactor, indicating the potential industrial application. Furthermore, the produced mannose in the reactor was directly served as feedstock for the fermentation process to bottom-up produced 19.2 g/L mannosyl-oligosaccharides (MOS) and 7.2 g/L mannosylglycerate (MG) using recombinant Corynebacterium glutamicum strains. Notably, such a mannose fermentation process facilitated the synthesis of MOS, which has not been achieved under glucose fermentation and improved MG production by 2.6-fold than that using the same C-mole of glucose. This approach also allowed access to produce other kinds of mannosyl derivatives from starch.
Asunto(s)
Reactores Biológicos , Corynebacterium glutamicum , Ácidos Glicéricos , Manosa/análogos & derivados , Ingeniería Metabólica , Microorganismos Modificados Genéticamente , Almidón/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/crecimiento & desarrollo , Manosa/biosíntesis , Manosa/genética , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/crecimiento & desarrolloRESUMEN
BACKGROUND: pWB980 derived from pUB110 is a promising expression vector in Bacillus for its high copy number and high stability. However, the low transformation rate of recombinant plasmids to the wild cells limited the application of it. On the basis of pWB980, constructing an E. coli-B. subtilis shuttle plasmid could facilitate the transformation rate to Bacillus cells. Because the insertion site for E. coli replication origin sequence (ori) is not unique in pWB980, in order to investigate the best insertion site, eight shuttle plasmids (pUC980-1 ~ pUC980-8) containing all possible insertion sites and directions were constructed. RESULTS: The results showed that all the selected insertion sites could be used to construct shuttle plasmid but some sites required a specific direction. And different insertion sites led to different properties of the shuttle plasmids. The best shuttle plasmids pUC980-1 and pUC980-2, which showed copies more than 450 per cell and segregational stabilities up to 98%, were selected for heterologous expressions of an alkaline pectate lyase gene pelN, an alkaline protease spro1 and a pullulanase gene pulA11, respectively. The highest extracellular activities of PelN, Spro1 and PulA11 were up to 5200 U/mL, 21,537 U/mL and 504 U/mL correspondingly after 54 h, 60 h and 48 h fermentation in a 10 L fermentor. Notably, PelN and Spro1 showed remarkably higher yields in Bacillus than previous reports. CONCLUSION: The optimum ori insertion site was the upstream region of BA3-1 in pWB980 which resulted in shuttle plasmids with higher copy numbers and higher stabilities. The novel shuttle plasmids pUC980-1 and pUC980-2 will be promising expression vectors in B. subtilis. Moreover, the ori insertion mechanism revealed in this work could provide theoretical guidance for further studies of pWB980 and constructions of other shuttle plasmids.
Asunto(s)
Bacillus subtilis/genética , Escherichia coli/genética , Vectores Genéticos/genética , Plásmidos/genética , Variaciones en el Número de Copia de ADN , Inestabilidad Genómica/genéticaRESUMEN
Propionic acid (PA) is widely used in the food, agricultural, and pharmaceutical industries. Since the petrochemical PA is unsustainable, biological production of PA from renewable substrates is gaining attention. In this study, we engineered the strain Pseudomonas putida KT2440 to transform L-threonine to PA with only CO2 released as by-product. The cell factory was created by chromosomal incorporation of heterologous L-threonine deaminase, permease, and acyl-CoA thioesterase, deletion of branch pathways as well as overproduction of the endogenous branched-chain alpha-keto acid dehydrogenase complex. The final engineered strain could produce 399 mM PA from 400 mM L-threonine in a batch biotransformation process, with a molar yield of 99.8% under the optimized conditions in 48 h. The PA titer further reached to 50.3 g/L (679 mM) with a productivity of 0.6 g/L/h in a fed-batch conversion process. No obvious by-products, such as acetate and succinate, were detected in the broth, which would significantly facilitate downstream purification steps. Thus, this study offers an alternative route for biological production of PA.
Asunto(s)
Ingeniería Metabólica/métodos , Propionatos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Treonina/metabolismo , Biotransformación , Eliminación de Gen , Microbiología IndustrialRESUMEN
A Gram-negative, aerobic, motile, non-spore-forming and rod-shaped bacterium, designated strain B18-69 T, was isolated from oil-well production liquid in Baolige oilfield, China. The strain was able to grow at pH 6-9.5 (optimum at pH 7), in 0-4% (w/v) NaCl (optimum at 0.5-1%, w/v) and at 35-60 °C (optimum at 55 °C). Major cellular fatty acids were C16:0, C19:0 cyclo ω8c, C17:0 cyclo and C18:1 ω7c. The predominant respiratory quinone was ubiquinone 8. Major polar lipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG) and phosphatidylcholine (PC). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain B18-69 T was most closely related to Tepidiphilus margaritifer DSM 15129 T (98.8% similarity). The draft genome of strain B18-69 T was composed of 2,250,419 bp, and the G+C content was 64.6 mol%. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain B18-69 T and T. margaritifer DSM 15129 T were 90.9% and 68.9%, respectively. Genotypic and phenotypic features indicate that strain B18-69 T represents a novel species of the genus Tepidiphilus, for which the name Tepidiphilus baoligensis sp. nov. is proposed. The type strain is B18-69 T (= CGMCC 1.13573 T = KCTC 62782 T).
Asunto(s)
Hydrogenophilaceae/clasificación , Yacimiento de Petróleo y Gas/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Hydrogenophilaceae/aislamiento & purificación , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/químicaRESUMEN
Steviol glycosides (SGs) with zero calories and high-intensity sweetness are the best substitutes of sugar for the human diet. Uridine diphosphate dependent glycosyltransferase (UGT) UGT76G1, as a key enzyme for the biosynthesis of SGs with a low heterologous expression level, hinders its application. In this study, a suitable fusion partner, Smt3, was found to enhance the soluble expression of UGT76G1 by 60%. Additionally, a novel strategy to improve the expression of Smt3-UGT76G1 was performed, which co-expressed endogenous genes prpD and malK in Escherichia coli. Notably, this is the first report of constructing an efficient E. coli expression system by regulating prpD and malK expression, which remarkably improved the expression of Smt3-UGT76G1 by 200% as a consequence. Using the high-expression strain E. coli BL21 (DE3) M/P-3-S32U produced 1.97 g/L of Smt3-UGT76G1 with a yield rate of 61.6 mg/L/h by fed-batch fermentation in a 10 L fermenter. The final yield of rebadioside A (Reb A) and rebadioside M (Reb M) reached 4.8 g/L and 1.8 g/L, respectively, when catalyzed by Smt3-UGT76G1 in the practical UDP-glucose regeneration transformation system in vitro. This study not only carried out low-cost biotransformation of SGs but also provided a novel strategy for improving expression of heterologous proteins in E. coli.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Glicósidos/biosíntesis , Glicosiltransferasas/metabolismo , Hidroliasas/metabolismo , Biocatálisis , Reactores Biológicos/microbiología , Biotransformación , Fermentación , Glicósidos/química , Glicosilación , Plásmidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Recombinación Genética/genética , SolubilidadRESUMEN
The production of chemicals from renewable biomass resources is usually limited by factors including high-cost processes and low efficiency of biosynthetic pathways. Fatty acids (FAs) are an ideal alternative biomass. Their advantages include high-efficiently producing acetyl-CoA and reducing power, coupling chemical production with CO2 fixation, and the fact that they are readily obtained from inexpensive feedstocks. The important platform chemical 3-hydroxypropionate (3HP) can be produced from FAs as the feedstock with a theoretical yield of 2.49â¯g/g, much higher than the theoretical yield from other feedstocks. In this study, we first systematically analyzed the limiting factors in FA-utilization pathways in Escherichia coli. Then, we optimized FA utilization in Escherichia coli by using a combination of metabolic engineering and optimization of fermentation conditions. The 3HP biosynthesis module was introduced into a FA-utilizing strain, and the flux balance was finely optimized to maximize 3HP production. The resulting strain was able to produce 3HP from FAs with a yield of 1.56â¯g/g, and was able to produce 3HP to a concentration of 52â¯g/L from FAs in a 5-L fermentation process. The strain also could produce 3HP from various type of FAs feedstock including gutter oil. This is the first report of a technique for the efficient production of the platform chemical 3HP from FAs.
Asunto(s)
Escherichia coli/metabolismo , Ácidos Grasos/metabolismo , Ácido Láctico/análogos & derivados , Biomasa , Dióxido de Carbono/metabolismo , Fermentación , Genoma Bacteriano/genética , Residuos Industriales , Ácido Láctico/biosíntesis , Malonil Coenzima A/metabolismo , Ingeniería Metabólica , Aceite de Soja/metabolismoRESUMEN
The utilization of one-carbon (C1) assimilation pathways to produce chemicals and fuels from low-cost C1 compounds could greatly reduce the substrate-related production costs, and would also alleviate the pressure of the resource supply for bio-manufacturing. However, the natural C1 assimilation pathways normally involve ATP consumption or the loss of carbon resources as CO2, resulting in low product yields, making the design of novel pathways highly pertinent. Here we present several new ATP-independent and carbon-conserving C1 assimilation cycles with 100% theoretical carbon yield, which were discovered by computational analysis of metabolic reaction set with 6578 natural reactions from MetaCyc database and 73 computationally predicted aldolase reactions from ATLAS database. Then, kinetic evaluation of these cycles was conducted and the cycles without kinetic traps were chosen for further experimental verification. Finally, we used the two engineered enzymes Gals and TalBF178Y for the artificial reactions to construct a novel C1 assimilation pathway in vitro and optimized the pathway to achieve 88% carbon yield. These results demonstrate the usefulness of computational design in finding novel metabolic pathways for the efficient utilization of C1 compounds and shedding light on other promising pathways.
Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Bases de Datos Factuales , Redes y Vías Metabólicas , Modelos Biológicos , Ingeniería MetabólicaRESUMEN
In this study, we identified two P450 enzymes (CYP5150AP3 and CYP5150AN1) from Thanatephorus cucumeris NBRC 6298 by combination of transcriptome sequencing and heterologous expression in Pichia pastoris The biotransformation of 11-deoxycortisol and testosterone by Pichia pastoris whole cells coexpressing the cyp5150ap3 and por genes demonstrated that the CYP5150AP3 enzyme possessed steroidal 7ß-hydroxylase activities toward these substrates, and the regioselectivity was dependent on the structures of steroidal compounds. CYP5150AN1 catalyzed the 2ß-hydroxylation of 11-deoxycortisol. It is interesting that they display different regioselectivity of hydroxylation from that of their isoenzyme, CYP5150AP2, which possesses 19- and 11ß-hydroxylase activities.IMPORTANCE The steroidal hydroxylases CYP5150AP3 and CYP5150AN1 together with the previously characterized CYP5150AP2 belong to the CYP5150A family of P450 enzymes with high amino acid sequence identity, but they showed completely different regioselectivities toward 11-deoxycortisol, suggesting the regioselectivity diversity of steroidal hydroxylases of CYP5150 family. They are also distinct from the known bacterial and fungal steroidal hydroxylases in substrate specificity and regioselectivity. Biocatalytic hydroxylation is one of the important transformations for the functionalization of steroid nucleus rings but remains a very challenging task in organic synthesis. These hydroxylases are useful additions to the toolbox of hydroxylase enzymes for the functionalization of steroids at various positions.
Asunto(s)
Sistema Enzimático del Citocromo P-450/química , Proteínas Fúngicas/química , Rhizoctonia/enzimología , Esteroide Hidroxilasas/química , Biotransformación , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas Fúngicas/metabolismo , Hidroxilación , Esteroide Hidroxilasas/metabolismo , Esteroides/metabolismo , Especificidad por SustratoRESUMEN
Schizochytrium is a promising source for the production of docosahexaenoic acid and astaxanthin. The effects of different methanol concentrations on astaxanthin, biomass, and production of the lipids, squalene, and total sterol in Schizochytrium limacinum B4D1 were investigated. Astaxanthin began to accumulate when the methanol concentration reached 3.2% and peaked at 5.6% methanol, with a 2,000-fold increase over that in the control. However, under cultivation with 5.6% methanol, the biomass, lipids, squalene, and total sterol decreased to various degrees. Transcriptomic analysis was performed to explore the effects of different methanol concentrations (0%, 3.2%, and 5.6%) on the expression profile of B4D1. Three key signaling pathways were found to play important roles in regulating cell growth and metabolism under cultivation with methanol. Five central carbon metabolism-associated genes were significantly downregulated in response to 5.6% methanol and thus were expected to result in less ATP and NADPH being available for cell growth and synthesis. High methanol conditions significantly downregulated three genes involved in fatty acid and squalene/sterol precursor biosynthesis but significantly upregulated geranylgeranyl diphosphate synthase, lycopene ß-cyclase, and ß-carotene 3-hydroxylase, which are involved in astaxanthin synthesis, thus resulting in an increase in the levels of precursors and the final production of astaxanthin. Additionally, the transcriptional levels of three stress response genes were upregulated. This study investigates gene expression profiles in the astaxanthin producer Schizochytrium when grown under various methanol concentrations. These results broaden current knowledge regarding genetic expression and provide important information for promoting astaxanthin biosynthesis in SchizochytriumIMPORTANCESchizochytrium strains are usually studied as oil-producing strains, but they can also synthesize other secondary metabolites, such as astaxanthin. In this study, methanol was used as an inducer, and we explored its effects on the production of astaxanthin, a highly valuable substance in Schizochytrium Methanol induced Schizochytrium to synthesize large amounts of astaxanthin. Transcriptomic analysis was used to investigate the regulation of signaling and metabolic pathways (mainly relative gene expression) in Schizochytrium grown in the presence of various concentrations of methanol. These results contribute to the understanding of the underlying molecular mechanisms and may aid in the future optimization of Schizochytrium for astaxanthin biosynthesis.