Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Insect Sci ; 24(4)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39023176

RESUMEN

Tephritis angustipennis (Diptera: Tephritidae) and Campiglossa loewiana (Diptera: Tephritidae) are phytophagous pests in China. Their damage has significantly impacted the collection and cultivation of germplasm resources of native Asteraceae plants. However, the genetic characteristics and structure of their population are unclear. This study focused on the highly damaging species of T. angustipennis and C. loewiana collected from the three-river source region (TRSR). We amplified the mitochondrial cytochrome C oxidase subunit I (mtCOI) gene sequences of these pests collected from this area and compared them with COI sequences from GenBank. We also analyzed their genetic diversity and structure. In T. angustipennis, 5 haplotypes were identified from 5 geographic locations; the genetic differentiation between France population FRPY (from Nylandia, Uusimaa) and China populations GLJZ (from Dehe Longwa Village, Maqin County), GLDR (from Zhique Village, Dari County), and GLMQ (from Rijin Village, Maqin County) was the strongest. GLJZ exhibited strong genetic differentiation from GLDR and GLMQ, with relatively low gene flow. For C. loewiana, 11 haplotypes were identified from 5 geographic locations; the genetic differentiation between the Chinese population GLMQ-YY (from Yangyu Forest Farm, Maqin County) and Finnish population FDNL (from Nylandia, Uusimaa) was the strongest, with relatively low gene flow, possibly due to geographical barriers in the Qinghai-Tibet plateau. Only 1 haplotype was identified across GLDR, GLMQ, and GLBM. High gene flow between distant locations indicates that human activities or wind dispersal may facilitate the dispersal of fruit flies and across different geographic. Geostatistical analysis suggested a recent population expansion of these 2 species in TRSR. Our findings provide technical references for identifying pests in the TRSR region and theoretical support for managing resistance, monitoring pest occurrences, analyzing environmental adaptability, and formulating biological control strategies for Tephritidae pests on Asteraceae plants.


Asunto(s)
Código de Barras del ADN Taxonómico , Complejo IV de Transporte de Electrones , Variación Genética , Tephritidae , Animales , Tephritidae/genética , China , Complejo IV de Transporte de Electrones/genética , Haplotipos , Filogenia , Proteínas de Insectos/genética
2.
Mitochondrial DNA B Resour ; 9(1): 168-172, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38274851

RESUMEN

Asterothamnus centraliasiaticus Novopokr., a species of perennial deciduous semi-shrub within the family Asteraceae, has excellent medical, economic, ecological and genetic value. In this study, the chloroplast genome of A. centraliasiaticus was first assembled using Illumina HiSeq2500 sequences. The results indicate that the complete cp genome of A. centraliasiaticus is 152,205 bp in length, and comprises a pair of inverted repeat (IR) regions of 25,031 bp each, a large single-copy (LSC) region of 83,956 bp and a small single-copy (SSC) region of 18,187 bp. The GC content of A. centraliasiaticus is 37.3%. A total of 130 genes were successfully annotated containing 85 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes. The maximum likelihood (ML) phylogenetic analysis based on the complete chloroplast genome data highly supported that A. centraliasiaticus was close to Aster lavandulifolius. These results will provide significant genetic information for the germplasm protection and reasonable development.

3.
Sci Rep ; 14(1): 15109, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956388

RESUMEN

Clematis nannophylla is a perennial shrub of Clematis with ecological, ornamental, and medicinal value, distributed in the arid and semi-arid areas of northwest China. This study successfully determined the chloroplast (cp) genome of C. nannophylla, reconstructing a phylogenetic tree of Clematis. This cp genome is 159,801 bp in length and has a typical tetrad structure, including a large single-copy, a small single-copy, and a pair of reverse repeats (IRa and IRb). It contains 133 unique genes, including 89 protein-coding, 36 tRNA, and 8 rRNA genes. Additionally, 66 simple repeat sequences, 50 dispersed repeats, and 24 tandem repeats were found; many of the dispersed and tandem repeats were between 20-30 bp and 10-20 bp, respectively, and the abundant repeats were located in the large single copy region. The cp genome was relatively conserved, especially in the IR region, where no inversion or rearrangement was observed, further revealing that the coding regions were more conserved than the noncoding regions. Phylogenetic analysis showed that C. nannophylla is more closely related to C. fruticosa and C. songorica. Our analysis provides reference data for molecular marker development, phylogenetic analysis, population studies, and cp genome processes to better utilise C. nannophylla.


Asunto(s)
Clematis , Evolución Molecular , Genoma del Cloroplasto , Filogenia , Genoma del Cloroplasto/genética , Clematis/genética , Clematis/clasificación , Cloroplastos/genética
4.
Ecol Evol ; 14(7): e70015, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39026959

RESUMEN

Reaumuria songarica, a drought-resistant shrub, is widely distributed and plays a crucial role in the northern deserts of China. It is a key species for desert rehabilitation and afforestation efforts. Using the Maxent model to predict suitable planting areas for R. songarica is an important strategy for combating desertification. With 184 occurrence points of R. songarica and 13 environmental variables, the optimized Maxent model has identified the main limiting factors for its distribution. Distribution patterns and variation trends of R. songarica were projected for current and future climates (2030s, 2050s, 2070s, and 2090s) and different scenarios (ssp_126, ssp_370, and ssp_585). Results show that setting parameters to RM (regulation multiplier) = 4 and FC (feature combination) = LQHPT yields a model with good accuracy and high reliability. Currently, R. songarica is primarily suitable for desert control in eight provinces and autonomous regions, including Inner Mongolia, Xinjiang, Qinghai, and Ningxia. The total suitable planting area is 148.80 × 104 km2, representing 15.45% of China's land area. Precipitation (Precipitation of the wettest month, Precipitation of the warmest quarter, and Annual precipitation) and Ultraviolet-B seasonality are the primary environmental factors limiting the growth and distribution of R. songarica. Mean temperature of the warmest quarter is the primary factor driving changes in the distribution of suitable areas for R. songarica under future climate scenarios. In future climate scenarios, the suitable planting area of R. songarica will shrink, and the distribution center will shift towards higher latitude, potentially indicate further desertification. The area of highly suitable habitat has increased, while moderately and less suitable habitat areas have decreased. Increased precipitation within R. songarica's water tolerance range is favorable for its growth and reproduction. With changes in the suitable cultivation area for R. songarica, priority should be given to exploring and utilizing its germplasm resources. Introduction and cultivation can be conducted in expanding regions, while scientifically effective measures should be implemented to protect germplasm resources in contracting regions. The findings of this study provide a theoretical basis for addressing desertification resulting from climate change and offer practical insights for the development, utilization, introduction, and cultivation of R. songarica germplasm resources.

5.
Front Plant Sci ; 15: 1366512, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606068

RESUMEN

Introduction: Seed traits related to recruitment directly affect plant fitness and persistence. Understanding the key patterns and influencing factors of seed trait variations is conducive to assessing plant colonization and habitat selection. However, the variation patterns of the critical seed traits of shrub species are usually underrepresented and disregarded despite their vital role in alpine desert ecosystems. Methods: This study gathered seeds from 21 Asterothamnus centraliasiaticus populations across the Qinghai-Tibetan Plateau, analyzing geographical patterns of seed traits to identify external environmental influences. Additionally, it explored how seed morphology and nutrients affect germination stress tolerance, elucidating direct and indirect factors shaping seed trait variations. Results: The results present substantial intraspecific variations in the seed traits of A. centraliasiaticus. Seed traits except seed length-to-width ratio (LWR) all vary significantly with geographic gradients. In addition, the direct and indirect effects of climatic variables and soil nutrients on seed traits were verified in this study. Climate mainly influences seed nutrients, and soil nutrients significantly affect seed morphology and seed nutrients. Furthermore, climate directly impacts seed germination drought tolerance index (GDTI) and germination saline-alkali tolerance index (GSTI). Seed germination cold tolerance index (GCTI) is influenced by climate and soil nutrients (mostly SOC). GDTI and GSTI are prominently influenced by seed morphology (largely the seed thousand-grain weight (TGW)), and GCTI is evidently affected by seed nutrients (mainly the content of soluble protein (CSP)). Discussion: The findings of this study amply explain seed trait variation patterns of shrubs in alpine desert ecosystems, possessing significant importance for understanding the mechanism of shrub adaptation to alpine desert ecosystems, predicting the outcomes of environmental change, and informing conservation efforts. This study can be a valuable reference for managing alpine desert ecosystems on the Qinghai-Tibetan Plateau.

6.
Plants (Basel) ; 13(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38794479

RESUMEN

Hairgrass (Deschampsia caespitosa), a widely distributed grass species considered promising in the ecological restoration of degraded grassland in the Qinghai-Xizang Plateau, is likely to be subjected to frequent drought and waterlogging stress due to ongoing climate change, further aggravating the degradation of grassland in this region. However, whether it would acclimate to water stresses resulting from extreme climates remains unknown. Proline accumulation is a crucial metabolic response of plants to challenging environmental conditions. This study aims to investigate the changes in proline accumulation and key enzymes in hairgrass shoot and root tissues in response to distinct climate extremes including moderate drought, moderate waterlogging, and dry-wet variations over 28 days using a completely randomized block design. The proline accumulation, contribution of the glutamate and ornithine pathways, and key enzyme activities related to proline metabolism in shoot and root tissues were examined. The results showed that water stress led to proline accumulation in both shoot and root tissues of hairgrass, highlighting the importance of this osmoprotectant in mitigating the effects of environmental challenges. The differential accumulation of proline in shoots compared to roots suggests a strategic allocation of resources by the plant to cope with osmotic stress. Enzymatic activities related to proline metabolism, such as Δ1-pyrroline-5-carboxylate synthetase, ornithine aminotransferase, Δ1-pyrroline-5-carboxylate reductase, Δ1-pyrroline-5-carboxylate dehydrogenase, and proline dehydrogenase, further emphasize the dynamic regulation of proline levels in hairgrass under water stress conditions. These findings support the potential for enhancing the stress resistance of hairgrass through the genetic manipulation of proline biosynthesis and catabolism pathways.

7.
Ecol Evol ; 13(11): e10734, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020678

RESUMEN

Overgrazing leads to grassland degradation and productivity decline. Rest-grazing during the regreen-up period can quickly restore grassland and fertilization is a common restoration strategy. However, the effects of rest-grazing time and fertilization on soil microorganisms are unclear in the alpine grasslands. Therefore, the experiment of rest-grazing time and fertilization was carried out to explore the response of soil microorganisms to rest-grazing time and fertilization measures. A field control experiment with rest-grazing time and fertilization as factors have been conducted from the time when grass returned to green till the livestock moved to the summer pasture in Dawu Town of Maqin County of China. The primary treatment we established was the five rest-grazing time, including rest-grazing time of 20 days, 30 days, 40 days, 50 days, and traditional grazing was used as a check group. At the same time, the secondary treatment was nitrogen addition of 300 kg·hm-2 in each primary treatment. The results showed that the total phospholipid fatty acid (total PLFA), actinomyces (Act), and arbuscular mycorrhizal fungi (AMF) showed an ever-increasing biomass with the increase of rest-grazing time and the highest was at 50 days of rest-grazing, and they were all significantly higher than CK. In addition, soil microbial biomass carbon-nitrogen ratio (MBC/MBN) had great influence on the change of microbial community. Applying nitrogen fertilizer can increase the maximum value of biomass of all PLFA groups and the biomass of all PLFA groups changed in an "inverted V" shape with the increase of rest-grazing time. Besides, instead of MBC/MBN, NO3 --N was positively correlated with the biomass of all PLFA groups, which actively regulated the trend of microbial functions. The longer rest-grazing time is more conducive to the biomass of all PLFA groups. However, applying nitrogen fertilizer could break this pattern, namely, the 30 days rest-grazing would be beneficial to the biomass of all PLFA groups. These findings provide key information that rest-grazing during the regreen-up period is benefiscial to the all PLFA groups and fertilization could change the response of microorganisms to rest-grazing, which provide reference measures for the restoration of degraded alpine meadows.

8.
Front Plant Sci ; 14: 1147208, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063188

RESUMEN

Global climate warming and shifts in rainfall patterns are expected to trigger increases in the frequency and magnitude of drought and/or waterlogging stress in plants. To cope with water stress, plants develop diverse tactics. However, the adoption capability and mechanism vary depending upon the plant species identity as well as stress duration and intensity. The objectives of this study were to evaluate the species-dependent responses of alpine herbaceous species to water stress. Nine herbaceous species were subjected to different water stresses (including moderate drought and moderate waterlogging) in pot culture using a randomized complete block design with three replications for each treatment. We hypothesized that water stress would negatively impact plant growth and metabolism. We found considerable interspecies differences in morphological, physiological, and biochemical responses when plants were exposed to the same water regime. In addition, we observed pronounced interactive effects of water regime and plant species identity on plant height, root length, root/shoot ratio, biomass, and contents of chlorophyll a, chlorophyll b, chlorophyll (a+b), carotenoids, malondialdehyde, soluble sugar, betaine, soluble protein and proline, implying that plants respond to water regime differently. Our findings may cast new light on the ecological restoration of grasslands and wetlands in the Qinghai-Tibetan Plateau by helping to select stress-tolerant plant species.

9.
Front Plant Sci ; 13: 987845, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226294

RESUMEN

Plant growth and development are closely related to water availability. Water deficit and water excess are detrimental to plants, causing a series of damage to plant morphology, physiological and biochemical processes. In the long evolutionary process, plants have evolved an array of complex mechanisms to combat against stressful conditions. In the present study, the duration-dependent changes in ascorbate (AsA) and glutathione (GSH) contents and activities of enzymes involved in the AsA-GSH cycle in hairgrass (Deschampsia caespitosa) in response to water stress was investigated in a pot trial using a complete random block design. The treatments were as follows: (1) heavily waterlogging, (2) moderate waterlogging, (3) light waterlogging, (4) light drought, (5) moderate drought, (6) heavily drought, and (7) a control (CK) with plant be maintained at optimum water availability. The hairgrass plants were subjected to waterlogging or drought for 7, 14, 21 and 28 days and data were measured following treatment. Results revealed that hairgrass subjected to water stress can stimulate enzymatic activities of ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and L-galactono-1, 4-lactone dehydrogenase (GalLDH), switched on the ascorbate-glutathione (AsA-GSH) cycle and the L-galactose synthesis, up-regulated the contents of AsA and GSH, and maintained higher ratios of ascorbate to dehydroascorbate (AsA/DHA) and reduced glutathione to oxidized glutathione (GSH/GSSG) to alleviate potential oxidative damage. However, the light waterlogging did not induce hairgrass under stress to switch on the AsA-GSH pathway. In general, the critic substances and enzyme activities in AsA-GSH metabolic pathway increased as the increase of water stress intensity. As the increase of exposure duration, the critic antioxidant substances content and enzyme activities increased first and then maintained a relatively stable higher level. Our findings provide comprehensive information on biochemical responses of hairgrass to hydrological change, which would be a major step for accelerating ecological restoration of degradation alpine marshes in the Qinghai-Tibetan Plateau.

10.
Front Plant Sci ; 13: 1060686, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714721

RESUMEN

The alpine sandy dune ecosystem is highly vulnerable to global climate change. Ecological stoichiometry in plants and soils plays a crucial role in biogeochemical cycles, energy flow and functioning in ecosystems. The alpine sandy dune ecosystem is highly vulnerable to global climate change. However, the stoichiometric changes and correlations of plants and soils among different types of sandy dunes have not been fully explored. Three sandy dune types (moving dune, MD; semifixed dune, SFD; and fixed dune, FD) of the Sophora moorcroftiana shrub in the middle reaches of the Yarlung Zangbo River were used as the subjects in the current study. Plant community characteristics, soil physicochemical properties, carbon (C), nitrogen (N), and phosphorus (P) contents of leaves, understorey herbs, litter, and soil microbes were evaluated to explore the C:N:P stoichiometry and its driving factors. Sandy dune type significant affected on the C:N:P stoichiometry in plants and soils. High soil N:P ratio was observed in FD and high plant C:P and N:P ratios in SFD and MD. The C:N ratio decreased with sand dune stabilization compared with other stoichiometric ratios of soil resources. Leaf C:P and N:P ratios in S. moorcroftiana were higher than those in the understorey herb biomass, because of the low P concentrations in leaves. C, N and P contents and stoichiometry of leaves, understorey herbs, litter and microbe were significantly correlated with the soil C, N and P contents and stoichiometry, with a higher correlation for soil N:P ratio. P was the mainly limiting factor for the growth of S. moorcroftiana population in the study area and its demand became increasingly critical with the increase in shrub age. The variation in the C:N:P stoichiometry in plants and soils was mainly modulated by the soil physicochemical properties, mainly for soil moisture, pH, available P and dissolved organic C. These findings provide key information on the nutrient stoichiometry patterns, element distribution and utilization strategies of C, N and P and as well as scrubland restoration and management in alpine valley sand ecosystems.

11.
Mitochondrial DNA B Resour ; 6(8): 2105-2106, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34250231

RESUMEN

The complete chloroplast genome of Pennisetum centrasiaticum was sequenced and reported here. The total genome size was 138,294 bp in length, containing a large single-copy region of 81,229 bp, a small single-copy region of 12,419 bp, and a pair of inverted repeat regions of 22,288 bp. The GC content of P. centrasiaticum chloroplast genome was 38.6%. It encodes a total of 119 unique genes, including 81 protein-coding genes, 34 tRNA genes, and four rRNA genes. Phylogenetic analysis showed a strong sister relationship with Cenchrus ciliaris and Cenchrus purpureus. Our findings provide fundamental information for further evolutionary and phylogenetic researches of P. centrasiaticum.

12.
Mitochondrial DNA B Resour ; 6(9): 2712-2713, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34435130

RESUMEN

Trikeraia hookeri is an alpine grass with significant ecological value. Here, the complete chloroplast genome sequence of T. hookeri using Illumina sequencing data was reported. The size of the whole cp genome was 137,696 bp in length, consisting of a pair of inverted repeats (IR 13,755 bp), a large single-copy region (LSC 81,613 bp), and a small single-copy region (SSC 28,568 bp). The T. hookeri chloroplast genome encodes 119 genes: 81 mRNA genes, 34 tRNA genes and 4 rRNA genes. The GC content of T. hookeri chloroplast genome was 38.8% and those in LSC, SSC, and IR regions were 36.9, 40.8, and 42.3%, respectively. The maximum-likelihood phylogenetic analysis demonstrated that T. hookeri was most closely related to Stipa lipskyi (NC028444) and Stipa purpurrea (NC029390). Our findings provide fundamental information for further evolutionary and phylogenetic researches of T. hookeri.

13.
Mitochondrial DNA B Resour ; 4(2): 3356-3357, 2019 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-33365991

RESUMEN

Elymus tangutorum (Nevski) Handel-Mazzetti (Poaceae: Triticeae), a hexaploid perennial herb, is a kind of forage plant with large biomass. In this study, the complete plastome sequence of E. tangutorum was reported. The size of the plastome is 134,949 bp in length, including a large single copy region (LSC) of 80,556 bp, a small single copy region (SSC) of 12,767 bp, and a pair of inverted repeat (IR) regions with 20,813 bp. Moreover, a total of 131 functional genes were annotated, including 85 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. The maximum likelihood (ML) phylogenetic tree suggested that E. tangutorum was closely related to Elymus libanoticus and Dasypyrum villosum.

14.
PLoS One ; 8(3): e58432, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23469278

RESUMEN

The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC), and soil total nitrogen (TN) were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe) were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.


Asunto(s)
Carbono/química , Monitoreo del Ambiente/economía , Nitrógeno/química , Poaceae/fisiología , Suelo/química , Altitud , Biodiversidad , Biomasa , Ciclo del Carbono , China , Ecosistema , Ciclo del Nitrógeno , Poaceae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA