Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Analyst ; 148(20): 4954-4966, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37721099

RESUMEN

Exosomes are a kind of extracellular vesicles, which play a significant role in intercellular communication and molecular exchange. Cancer-derived exosomes are potential and ideal biomarkers for the early diagnosis and treatment monitoring of cancers because of their abundant biological information and contribution to the interaction between cancer cells and the tumor microenvironment. However, there are a number of drawbacks, such as low sensitivity and tedious steps, in conventional detection techniques. Furthermore, exosome quantification is not enough to accurately distinguish cancer patients from healthy individuals. Therefore, developing efficient, accurate, and inexpensive exosome surface protein analysis techniques is necessary and critical. In recent years, a considerable number of researchers have presented novel detection strategies in this field. This review summarizes the recent progress in quantitative technologies for the analysis of cancer-related exosome proteins, mainly including the detection methods based on aptamers, nanomaterials, and antibodies, discusses a roadmap for future developments, and aims to offer an innovative perspective of exosome research.


Asunto(s)
Exosomas , Neoplasias , Humanos , Exosomas/metabolismo , Proteínas/metabolismo , Biomarcadores/metabolismo , Neoplasias/metabolismo , Anticuerpos/metabolismo , Microambiente Tumoral
2.
Ecotoxicol Environ Saf ; 259: 115046, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37235901

RESUMEN

Low-molecular-weight organic acids (LMWOAs) are essential components of rice roots exudates and an important source of soil organic carbon. The chemical-microbial pathway by which LMWOA affects arsenic (As) cycling in the rhizosphere of paddy soils is still unclear. In this study, three typical LMWOAs (acetic acid (AA), oxalic acid (OA), and citric acid (CA)) in rice root exudates were added to As-contaminated soil at a concentration of 10 mM, mimicking the rhizosphere environment. The results showed that the addition of AA and OA inhibited the mobilization of As in the rhizosphere soil. After 14 days of incubation, the content of As in the porewater of AA and OA decreased by 40% and 22%, respectively, compared with the control. AA hindered the mobilization of As in soil via promoting the formation of secondary minerals. The addition of OA inhibits the mobilization of As via increasing the proportion of As (V) in porewater and promoting the formation of secondary minerals in soil. In addition, OA addition not only significantly increased the aioA gene abundance but also notably enriched the microorganisms containing As (III) methylation functional genes (arsM). The addition of CA greatly expedited the release of As from the soil solid phase through the solubilization of Fe/Mn minerals via the effects of both soil chemistry and microbial action. Furthermore, linear discriminant analysis effect size (LEfSe) revealed the possibility that bacteria such as Burkholderia, Magnetospirillum, and Mycobacterium were involved in the reduction or methylation of As in the rhizosphere of paddy soil. This study revealed the internal causes of LMWOAs regulating As transformation and mobilization in flooded paddy soil and provided theoretical support for reducing As accumulation in rice by breeding rice varieties with high AA and OA secretions.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Arsénico/análisis , Hierro/química , Ácido Acético , Ácido Oxálico , Suelo/química , Rizosfera , Ácido Cítrico/metabolismo , Carbono/metabolismo , Fitomejoramiento , Minerales/metabolismo , Ácidos/metabolismo , Contaminantes del Suelo/análisis , Oryza/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA