Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PeerJ ; 12: e17127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560457

RESUMEN

Background: Pudendal neuralgia (PN) is a chronic neuropathy that causes pain, numbness, and dysfunction in the pelvic region. The current state-of-the-art treatment is pulsed radiofrequency (PRF) in which a needle is supposed to be placed close to the pudendal nerve for neuromodulation. Given the effective range of PRF of 5 mm, the accuracy of needle placement is important. This study aimed to investigate the potential of augmented reality guidance for improving the accuracy of needle placement in pulsed radiofrequency treatment for pudendal neuralgia. Methods: In this pilot study, eight subjects performed needle placements onto an in-house developed phantom model of the pelvis using AR guidance. AR guidance is provided using an in-house developed application on the HoloLens 2. The accuracy of needle placement was calculated based on the virtual 3D models of the needle and targeted phantom nerve, derived from CBCT scans. Results: The median Euclidean distance between the tip of the needle and the target is found to be 4.37 (IQR 5.16) mm, the median lateral distance is 3.25 (IQR 4.62) mm and the median depth distance is 1.94 (IQR 7.07) mm. Conclusion: In this study, the first method is described in which the accuracy of patient-specific needle placement using AR guidance is determined. This method could potentially improve the accuracy of PRF needle placement for pudendal neuralgia, resulting in improved treatment outcomes.


Asunto(s)
Realidad Aumentada , Nervio Pudendo , Neuralgia del Pudendo , Tratamiento de Radiofrecuencia Pulsada , Humanos , Neuralgia del Pudendo/terapia , Tratamiento de Radiofrecuencia Pulsada/métodos , Proyectos Piloto
2.
PLOS Digit Health ; 3(4): e0000458, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38635844

RESUMEN

The conventional treatment for distal radius fractures typically involves immobilization of the injured extremity using a conventional forearm cast. These casts do cause all sorts of discomfort during wear and impose life-style restrictions on the wearer. Personalized 3D printed splints, designed using three-dimensional (3D) imaging systems, might overcome these problems. To obtain a patient specific splint, commercially available 3D camera systems are utilized to capture patient extremities, generating 3D models for splint design. This study investigates the feasibility of utilizing a new camera system (SPENTYS) to capture 3D surface scans of the forearm for the design of 3D printed splints. In a prospective observational cohort study involving 17 healthy participants, we conducted repeated 3D imaging using both the new (SPENTYS) and a reference system (3dMD) to assess intersystem accuracy and repeatability. The intersystem accuracy of the SPENTYS system was determined by comparison of the 3D surface scans with the reference system (3dMD). Comparison of consecutive images acquired per device determined the repeatability. Feasibility was measured with system usability score questionnaires distributed among professionals. The mean absolute difference between the two systems was 0.44 mm (SD:0.25). The mean absolute difference of the repeatability of the reference -and the SPENTYS system was respectively 0.40 mm (SD: 0.30) and 0.53 mm (SD: 0.25). Both repeatability and intersystem differences were within the self-reported 1 mm. The workflow was considered easy and effective, emphasizing the potential of this approach within a workflow to obtain patient specific splint.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA