Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 48(3): 353-64, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23022383

RESUMEN

MicroRNAs typically function at the level of posttranscriptional gene silencing within the cytoplasm; however, increasing evidence suggests that they may also function in nuclear, Argonaut-containing complexes, to directly repress target gene transcription. We have investigated the role of microRNAs in mediating endoplasmic reticulum (ER) stress responses. ER stress triggers the activation of three signaling molecules: Ire-1α/ß, PERK, and ATF6, whose function is to facilitate adaption to the ensuing stress. We demonstrate that PERK induces miR-211, which in turn attenuates stress-dependent expression of the proapoptotic transcription factor chop/gadd153. MiR-211 directly targets the proximal chop/gadd153 promoter, where it increases histone methylation and represses chop expression. Maximal chop accumulation ultimately correlates with miR-211 downregulation. Our data suggest a model in which PERK-dependent miR-211 induction prevents premature chop accumulation and thereby provides a window of opportunity for the cell to re-establish homeostasis prior to apoptotic commitment.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/genética , Factor de Transcripción CHOP/genética , eIF-2 Quinasa/genética , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Apoptosis/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Estrés del Retículo Endoplásmico/genética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Metilación , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Células 3T3 NIH , Fosforilación , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tapsigargina/farmacología , Factor de Transcripción CHOP/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , eIF-2 Quinasa/metabolismo
2.
Mol Cell ; 34(3): 298-310, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19450528

RESUMEN

A hallmark of the cellular response to DNA double-strand breaks (DSBs) is histone H2AX phosphorylation in chromatin to generate gamma-H2AX. Here, we demonstrate that gamma-H2AX densities increase transiently along DNA strands as they are broken and repaired in G1 phase cells. The region across which gamma-H2AX forms does not spread as DSBs persist; rather, gamma-H2AX densities equilibrate at distinct levels within a fixed distance from DNA ends. Although both ATM and DNA-PKcs generate gamma-H2AX, only ATM promotes gamma-H2AX formation to maximal distance and maintains gamma-H2AX densities. MDC1 is essential for gamma-H2AX formation at high densities near DSBs, but not for generation of gamma-H2AX over distal sequences. Reduced H2AX levels in chromatin impair the density, but not the distance, of gamma-H2AX formed. Our data suggest that H2AX fuels a gamma-H2AX self-reinforcing mechanism that retains MDC1 and activated ATM in chromatin near DSBs and promotes continued local phosphorylation of H2AX.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Linfocitos B/citología , Linfocitos B/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Endonucleasas , Fase G1/fisiología , Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T/genética , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Recombinación Genética , Timo/citología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
3.
Nature ; 467(7314): 479-83, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20865002

RESUMEN

Origins of replication are activated throughout the S phase of the cell cycle such that some origins fire early and others fire late to ensure that each chromosome is completely replicated in a timely fashion. However, in response to DNA damage or replication fork stalling, eukaryotic cells block activation of unfired origins. Human cells derived from patients with ataxia telangiectasia are deficient in this process due to the lack of a functional ataxia telangiectasia mutated (ATM) kinase and elicit radioresistant DNA synthesis after γ-irradiation(2). This effect is conserved in budding yeast, as yeast cells lacking the related kinase Mec1 (ATM and Rad3-related (ATR in humans)) also fail to inhibit DNA synthesis in the presence of DNA damage. This intra-S-phase checkpoint actively regulates DNA synthesis by inhibiting the firing of late replicating origins, and this inhibition requires both Mec1 and the downstream checkpoint kinase Rad53 (Chk2 in humans). However, the Rad53 substrate(s) whose phosphorylation is required to mediate this function has remained unknown. Here we show that the replication initiation protein Sld3 is phosphorylated by Rad53, and that this phosphorylation, along with phosphorylation of the Cdc7 kinase regulatory subunit Dbf4, blocks late origin firing in Saccharomyces cerevisiae. Upon exposure to DNA-damaging agents, cells expressing non-phosphorylatable alleles of SLD3 and DBF4 (SLD3-m25 and dbf4-m25, respectively) proceed through the S phase faster than wild-type cells by inappropriately firing late origins of replication. SLD3-m25 dbf4-m25 cells grow poorly in the presence of the replication inhibitor hydroxyurea and accumulate multiple Rad52 foci. Moreover, SLD3-m25 dbf4-m25 cells are delayed in recovering from transient blocks to replication and subsequently arrest at the DNA damage checkpoint. These data indicate that the intra-S-phase checkpoint functions to block late origin firing in adverse conditions to prevent genomic instability and maximize cell survival.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN/fisiología , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Origen de Réplica/fisiología , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Hidroxiurea/farmacología , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Origen de Réplica/efectos de los fármacos , Fase S/efectos de los fármacos , Fase S/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
4.
Mol Pharmacol ; 83(3): 594-604, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23229510

RESUMEN

The Integrated Stress Response (ISR) is a signaling program that enables cellular adaptation to stressful conditions like hypoxia and nutrient deprivation in the tumor microenvironment. An important effector of the ISR is activating transcription factor 4 (ATF4), a transcription factor that regulates genes involved in redox homeostasis and amino acid metabolism and transport. Because both inhibition and overactivation of the ISR can induce tumor cell death, modulators of ATF4 expression could prove to be clinically useful. In this study, chemical libraries were screened for modulators of ATF4 expression. We identified one compound, E235 (N-(1-benzyl-piperidin-4-yl)-2-(4-fluoro-phenyl)-benzo[d]imidazo[2,1-b]thiazole-7-carboxamide), that activated the ISR and dose-dependently increased levels of ATF4 in transformed cells. A dose-dependent decrease in viability was observed in several mouse and human tumor cell lines, and knockdown of ATF4 significantly increased the antiproliferative effects of E235. Interestingly, low µM doses of E235 induced senescence in many cell types, including HT1080 human fibrosarcoma and B16F10 mouse melanoma cells. E235-mediated induction of senescence was not dependent on p21 or p53; however, p21 conferred protection against the growth inhibitory effects of E235. Treatment with E235 resulted in an increase in cells arrested at the G2/M phase with a concurrent decrease in S-phase cells. E235 also activated DNA damage response signaling, resulting in increased levels of Ser15-phosphorylated p53, γ-H2AX, and phosphorylated checkpoint kinase 2 (Chk2), although E235 does not appear to cause physical DNA damage. Induction of γ-H2AX was abrogated in ATF4 knockdown cells. Together, these results suggest that modulation of the ISR pathway with the small molecule E235 could be a promising antitumor strategy.


Asunto(s)
Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Daño del ADN , Femenino , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/genética , Fibrosarcoma/metabolismo , Fibrosarcoma/patología , Humanos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
5.
Nature ; 446(7137): 806-10, 2007 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-17314980

RESUMEN

Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that is largely invisible to protein-protein interaction data sets. Here we present an epistatic miniarray profile (E-MAP) consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology (including DNA replication/repair, chromatid segregation and transcriptional regulation). This E-MAP reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function. Thus, genetic interaction data make it possible to dissect functionally multi-protein complexes, including Mediator, and to organize distinct protein complexes into pathways. In one pathway defined here, we show that Rtt109 is the founding member of a novel class of histone acetyltransferases responsible for Asf1-dependent acetylation of histone H3 on lysine 56. This modification, in turn, enables a ubiquitin ligase complex containing the cullin Rtt101 to ensure genomic integrity during DNA replication.


Asunto(s)
Cromosomas Fúngicos/metabolismo , Epistasis Genética , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilación , Segregación Cromosómica , Cromosomas Fúngicos/genética , Reparación del ADN , Replicación del ADN , Histonas/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Unión Proteica , Curva ROC , Saccharomyces cerevisiae/citología , Transcripción Genética
6.
Clin Cancer Res ; 21(4): 675-9, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25182515

RESUMEN

The endoplasmic reticulum (ER) is a highly specialized organelle that provides an oxidizing, profolding environment for protein synthesis and maturation. The ER also hosts a dynamic signaling network that can sense and respond to physiologic changes that affect its environment, thereby influencing overall cell fate. Limitation of nutrients and oxygen have a direct effect on the efficiency of protein folding in the ER, and are classic inducers of the ER resident signaling pathway, the unfolded protein response (UPR). Not only does the UPR regulate ER homeostasis in normal cells experiencing such stress, but strong evidence also suggests that tumor cells can co-opt the cytoprotective aspects of this response to survive the hypoxic, nutrient-restricted conditions of the tumor microenvironment.


Asunto(s)
Neoplasias/metabolismo , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada/fisiología , Retículo Endoplásmico/metabolismo , Humanos
7.
Cancer Biol Ther ; 15(8): 1106-11, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24846185

RESUMEN

Restriction of nutrients and oxygen in the tumor microenvironment disrupts ER homeostasis and adaptation to such stress is mediated by the key UPR effector PERK. Given its pro-tumorigenic activity, significant efforts have been made to elucidate the molecular mechanisms that underlie PERK function. Chemical-genetic approaches have recently proven instrumental in pathway mapping and interrogating kinase function. To enable a detailed study of PERK signaling we have generated an analog-sensitive PERK allele that accepts N(6)-alkylated ATP analogs. We find that this allele can be regulated by bulky ATP-competitive inhibitors, confirming the identity of the PERK gatekeeper residue as methionine 886. Furthermore, this analog-sensitive allele can be used to specifically label substrates with thiophosphate both in vitro and in cells. These data highlight the potential for using chemical-genetic techniques to identify novel PERK substrates, thereby providing an expanded view of PERK function and further definition of its signaling networks.


Asunto(s)
eIF-2 Quinasa/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Adenosina Trifosfato/farmacología , Alelos , Línea Celular Tumoral , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Metionina/metabolismo , Mutación , eIF-2 Quinasa/genética
8.
Science ; 329(5996): 1201-5, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20647423

RESUMEN

The mammalian adenosine monophosphate-activated protein kinase (AMPK) is a serine-threonine kinase protein complex that is a central regulator of cellular energy homeostasis. However, the mechanisms by which AMPK mediates cellular responses to metabolic stress remain unclear. We found that AMPK activates transcription through direct association with chromatin and phosphorylation of histone H2B at serine 36. AMPK recruitment and H2B Ser36 phosphorylation colocalized within genes activated by AMPK-dependent pathways, both in promoters and in transcribed regions. Ectopic expression of H2B in which Ser36 was substituted by alanine reduced transcription and RNA polymerase II association to AMPK-dependent genes, and lowered cell survival in response to stress. Our results place AMPK-dependent H2B Ser36 phosphorylation in a direct transcriptional and chromatin regulatory pathway leading to cellular adaptation to stress.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Estrés Fisiológico , Transcripción Genética , Proteínas Quinasas Activadas por AMP/química , Adaptación Fisiológica , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Activación Enzimática , Regulación de la Expresión Génica , Histonas/química , Humanos , Ratones , Fosforilación , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
10.
Cell Cycle ; 5(22): 2561-5, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17106263

RESUMEN

Histone modifications have been implicated in both DNA repair and checkpoint-mediated responses to DNA damage. Recently much attention has focused on the acetylation of H3 K56. Indeed, this modification is cell cycle-regulated, maintained upon replicative damage in a checkpoint-dependent manner, and is essential for surviving DNA damage. We and others have discovered that two members of the HDAC Sirtuin family, Hst3 and Hst4, negatively regulate H3 K56 acetylation in budding yeast. Additionally, we have shown that these two HDACs are targeted for repression by the DNA damage checkpoint, which is vital for DNA damage tolerance. Discovery that two HDACs are negative regulators of the cellular response to DNA damage and that they target the acetylation of H3 K56 reveals a complex relationship between histone modifications, HDACs, and the DNA damage response. Here, we discuss the recent reports of the regulation of H3 K56-Ac by Hst3 and Hst4 and put forth the critical questions that remain for understanding the intimate, though poorly characterized, connection between chromatin states and genomic maintenance.


Asunto(s)
Histona Desacetilasas/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuinas/metabolismo , Acetilación , Animales , Regulación de la Expresión Génica , Inestabilidad Genómica , Histona Desacetilasas/genética , Humanos , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
11.
Mol Cell ; 23(1): 109-19, 2006 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16818235

RESUMEN

Histone modifications, including H3 K56 acetylation, have been implicated in DNA damage tolerance. Here, we present evidence that Hst3 and Hst4, two paralogues of the histone deacetylase Sir2, target the cell cycle-regulated acetylation of H3 on K56 and are downregulated during DNA damage in a checkpoint-dependent manner. We show that Hst3 and Hst4 are themselves cell cycle regulated and that their misexpression affects H3 K56-Ac. Moreover, a histone H3 K56R mutation is epistatic to all phenotypes caused by HST3/4 deletion or HST3 overexpression, suggesting that H3K56-Ac is the major target of these histone deacetylases. On examining 18 members of the "Clb2 cluster" of cell cycle-regulated proteins to which Hst3 belongs, we find that two others, Ynl058c and Alk1, are significantly downregulated on DNA damage. Taken together, our data show that Hst3/Hst4 are negative regulators of H3 K56-Ac and that HST3 downregulation by a checkpoint-mediated transcriptional repression system is essential for surviving DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Ciclo Celular/genética , Daño del ADN/fisiología , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilación , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular , Lisina/genética , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA