Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35408784

RESUMEN

Lysophosphatidic acid (LPA) is a natural bioactive phospholipid with pleiotropic activities affecting multiple tissues, including bone. LPA exerts its biological functions by binding to G-protein coupled LPA receptors (LPA1-6) to stimulate cell migration, proliferation, and survival. It is largely produced by autotaxin (ATX), a secreted enzyme with lysophospholipase D activity that converts lysophosphatidylcholine (LPC) into active LPA. Beyond its enzymatic activity, ATX serves as a docking molecule facilitating the efficient delivery of LPA to its specific cell surface receptors. Thus, LPA effects are the result of local production by ATX in a given tissue or cell type. As a consequence, the ATX/LPA axis should be considered as an entity to better understand their roles in physiology and pathophysiology and to propose novel therapeutic strategies. Herein, we provide not only an extensive overview of the relevance of the ATX/LPA axis in bone cell commitment and differentiation, skeletal development, and bone disorders, but also discuss new working hypotheses emerging from the interplay of ATX/LPA with well-established signaling pathways regulating bone mass.


Asunto(s)
Enfermedades Óseas , Huesos , Lisofosfolípidos , Hidrolasas Diéster Fosfóricas , Huesos/fisiología , Humanos , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo
2.
Am J Physiol Regul Integr Comp Physiol ; 321(1): R29-R40, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33978493

RESUMEN

Timely and accurate diagnosis of osteoporosis is essential for adequate therapy. Calcium isotope ratio (δ44/42Ca) determination has been suggested as a sensitive, noninvasive, and radiation-free biomarker for the diagnosis of osteoporosis, reflecting bone calcium balance. The quantitative diagnostic is based on the calculation of the δ44/42Ca difference between blood, urine, and bone. The underlying cellular processes, however, have not been studied systematically. We quantified calcium transport and δ44/42Ca fractionation during in vitro bone formation and resorption by osteoblasts and osteoclasts and across renal proximal tubular epithelial cells (HK-2), human vein umbilical endothelial cells (HUVECs), and enterocytes (Caco-2) in transwell systems and determined transepithelial electrical resistance characteristics. δ44/42Ca fractionation was furthermore quantified with calcium binding to albumin and collagen. Calcified matrix formed by osteoblasts was isotopically lighter than culture medium by -0.27 ± 0.03‰ within 5 days, while a consistent effect of activated osteoclasts on δ44/42Ca could not be demonstrated. A transient increase in δ44/42Ca in the apical compartment by 0.26‰ occured across HK-2 cells, while δ44/42Ca fractionation was small across the HUVEC barrier and absent with Caco-2 enterocytes, and with binding of calcium to albumin and collagen. In conclusion, δ44/42Ca fractionation follows similar universal principles as during inorganic mineral precipitation; osteoblast activity results in δ44/42Ca fractionation. δ44/42Ca fractionation also occurs across the proximal tubular cell barrier and needs to be considered for in vivo bone mineralization modeling. In contrast, the effect of calcium transport across endothelial and enterocyte barriers on blood δ44/42Ca should be low and is absent with physiochemical binding of calcium to proteins.


Asunto(s)
Isótopos de Calcio/química , Calcio/química , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Transporte Biológico , Células CACO-2 , Calcio/metabolismo , Línea Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Túbulos Renales Proximales/citología , Unión Proteica
3.
Curr Osteoporos Rep ; 19(6): 553-562, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34773213

RESUMEN

PURPOSE OF REVIEW: To describe the methods that can be used to obtain functional and mature osteoclasts from peripheral blood mononuclear cells (PBMCs) and report the data obtained with this model in two peculiar diseases, namely pediatric chronic kidney disease-associated mineral and bone disorders (CKD-MBD) and nephropathic cystinosis. To discuss future research possibilities in the field. RECENT FINDINGS: Bone tissue undergoes continuous remodeling throughout life to maintain bone architecture; it involves two processes: bone formation and bone resorption with the coordinated activity of osteoblasts, osteoclasts, and osteocytes. Animal models fail to fully explain human bone pathophysiology during chronic kidney disease, mainly due to interspecies differences. The development of in vitro models has permitted to mimic human bone-related diseases as an alternative to in vivo models. Since 1997, osteoclasts have been generated in cell cultures, notably when culturing PBMCs with specific growth factors and cytokines (i.e., M-CSF and RANK-L), without the need for osteoblasts or stromal cells. These models may improve the global understanding of bone pathophysiology. They can be been used not only to evaluate the direct effects of cytokines, hormones, cells, or drugs on bone remodeling during CKD-MBD, but also in peculiar genetic renal diseases inducing specific bone impairment.


Asunto(s)
Enfermedades Óseas/metabolismo , Técnicas de Cultivo de Célula/métodos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Animales , Humanos
4.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354056

RESUMEN

Patients with chronic kidney disease (CKD) display significant mineral and bone disorders (CKD-MBD) that induce significant cardiovascular, growth and bone comorbidities. Nephropathic cystinosis is an inherited metabolic disorder caused by the lysosomal accumulation of cystine due to mutations in the CTNS gene encoding cystinosin, and leads to end-stage renal disease within the second decade. The cornerstone of management relies on cysteamine therapy to decrease lysosomal cystine accumulation in target organs. However, despite cysteamine therapy, patients display severe bone symptoms, and the concept of "cystinosis metabolic bone disease" is currently emerging. Even though its exact pathophysiology remains unclear, at least five distinct but complementary entities can explain bone impairment in addition to CKD-MBD: long-term consequences of renal Fanconi syndrome, malnutrition and copper deficiency, hormonal disturbances, myopathy, and intrinsic/iatrogenic bone defects. Direct effects of both CTNS mutation and cysteamine on osteoblasts and osteoclasts are described. Thus, the main objective of this manuscript is not only to provide a clinical update on bone disease in cystinosis, but also to summarize the current experimental evidence demonstrating a functional impairment of bone cells in this disease and to discuss new working hypotheses that deserve future research in the field.


Asunto(s)
Enfermedades Óseas/etiología , Cisteamina/uso terapéutico , Cistinosis/tratamiento farmacológico , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Remodelación Ósea , Trastorno Mineral y Óseo Asociado a la Enfermedad Renal Crónica/etiología , Cistinosis/complicaciones , Cistinosis/genética , Humanos , Mutación
5.
Nephrol Dial Transplant ; 33(9): 1525-1532, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29365190

RESUMEN

Background: Bone impairment is a poorly described complication of nephropathic cystinosis (NC). The objectives of this study were to evaluate in vitro effects of cystinosin (CTNS) mutations on bone resorption and of cysteamine treatment on bone cells [namely human osteoclasts (OCs) and murine osteoblasts]. Methods: Human OCs were differentiated from peripheral blood mononuclear cells (PBMCs) of patients and healthy donors (HDs). Cells were treated with increasing doses of cysteamine in PBMCs or on mature OCs to evaluate its impact on differentiation and resorption, respectively. Similarly, cysteamine-treated osteoblasts derived from murine mesenchymal stem cells were assessed for differentiation and activity with toxicity and proliferation assays. Results: CTNS was expressed in human OCs derived from HDs; its expression was regulated during monocyte colony-stimulating factor- and receptor activator of nuclear factor-κB-dependent osteoclastogenesis and required for efficient bone resorption. Cysteamine had no impact on osteoclastogenesis but inhibited in vitro HD osteoclastic resorption; however, NC OC-mediated bone resorption was impaired only at high doses. Only low concentrations of cysteamine (50 µM) stimulated osteoblastic differentiation and maturation, while this effect was no longer observed at higher concentrations (200 µM). Conclusion: CTNS is required for proper osteoclastic activity. In vitro low doses of cysteamine have beneficial antiresorptive effects on healthy human-derived OCs and may partly correct the CTNS-induced osteoclastic dysfunction in patients with NC. Moreover, in vitro low doses of cysteamine also stimulate osteoblastic differentiation and mineralization, with an inhibitory effect at higher doses, likely explaining, at least partly, the bone toxicity observed in patients receiving high doses of cysteamine.


Asunto(s)
Resorción Ósea/metabolismo , Cistinosis/fisiopatología , Síndrome de Fanconi/complicaciones , Osteoclastos/patología , Osteogénesis/fisiología , Animales , Resorción Ósea/etiología , Diferenciación Celular , Células Cultivadas , Cistinosis/complicaciones , Síndrome de Fanconi/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Ratones , Osteoclastos/metabolismo
6.
J Pathol ; 242(1): 73-89, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28207159

RESUMEN

Bone metastasis affects >70% of patients with advanced breast cancer. However, the molecular mechanisms underlying this process remain unclear. On the basis of analysis of clinical datasets, and in vitro and in vivo experiments, we report that the ZNF217 oncogene is a crucial mediator and indicator of bone metastasis. Patients with high ZNF217 mRNA expression levels in primary breast tumours had a higher risk of developing bone metastases. MDA-MB-231 breast cancer cells stably transfected with ZNF217 (MDA-MB-231-ZNF217) showed the dysregulated expression of a set of genes with bone-homing and metastasis characteristics, which overlapped with two previously described 'osteolytic bone metastasis' gene signatures, while also highlighting the bone morphogenetic protein (BMP) pathway. The latter was activated in MDA-MB-231-ZNF217 cells, and its silencing by inhibitors (Noggin and LDN-193189) was sufficient to rescue ZNF217-dependent cell migration, invasion or chemotaxis towards the bone environment. Finally, by using non-invasive multimodal in vivo imaging, we found that ZNF217 increases the metastatic growth rate in the bone and accelerates the development of severe osteolytic lesions. Altogether, the findings of this study highlight ZNF217 as an indicator of the emergence of breast cancer bone metastasis; future therapies targeting ZNF217 and/or the BMP signalling pathway may be beneficial by preventing the development of bone metastases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Neoplasias de la Mama/genética , Transactivadores/genética , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Neoplasias Óseas/metabolismo , Remodelación Ósea/genética , Neoplasias de la Mama/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Xenoinjertos , Humanos , Estimación de Kaplan-Meier , Ratones Desnudos , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , ARN Mensajero/genética , ARN Neoplásico/genética , Transducción de Señal/genética , Transactivadores/biosíntesis , Células Tumorales Cultivadas
7.
J Biol Chem ; 289(10): 6551-6564, 2014 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24429286

RESUMEN

Lysophosphatidic acid (LPA) is a natural bioactive lipid that acts through six different G protein-coupled receptors (LPA1-6) with pleiotropic activities on multiple cell types. We have previously demonstrated that LPA is necessary for successful in vitro osteoclastogenesis of bone marrow cells. Bone cells controlling bone remodeling (i.e. osteoblasts, osteoclasts, and osteocytes) express LPA1, but delineating the role of this receptor in bone remodeling is still pending. Despite Lpar1(-/-) mice displaying a low bone mass phenotype, we demonstrated that bone marrow cell-induced osteoclastogenesis was reduced in Lpar1(-/-) mice but not in Lpar2(-/-) and Lpar3(-/-) animals. Expression of LPA1 was up-regulated during osteoclastogenesis, and LPA1 antagonists (Ki16425, Debio0719, and VPC12249) inhibited osteoclast differentiation. Blocking LPA1 activity with Ki16425 inhibited expression of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and dendritic cell-specific transmembrane protein and interfered with the fusion but not the proliferation of osteoclast precursors. Similar to wild type osteoclasts treated with Ki16425, mature Lpar1(-/-) osteoclasts had reduced podosome belt and sealing zone resulting in reduced mineralized matrix resorption. Additionally, LPA1 expression markedly increased in the bone of ovariectomized mice, which was blocked by bisphosphonate treatment. Conversely, systemic treatment with Debio0719 prevented ovariectomy-induced cancellous bone loss. Moreover, intravital multiphoton microscopy revealed that Debio0719 reduced the retention of CX3CR1-EGFP(+) osteoclast precursors in bone by increasing their mobility in the bone marrow cavity. Overall, our results demonstrate that LPA1 is essential for in vitro and in vivo osteoclast activities. Therefore, LPA1 emerges as a new target for the treatment of diseases associated with excess bone loss.


Asunto(s)
Resorción Ósea/patología , Proteínas de la Membrana/metabolismo , Factores de Transcripción NFATC/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Osteoclastos/patología , Receptores del Ácido Lisofosfatídico/fisiología , Animales , Células de la Médula Ósea/patología , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/genética , Diferenciación Celular/efectos de los fármacos , Movimiento Celular , Femenino , Isoxazoles/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ácidos Oléicos/farmacología , Organofosfatos/farmacología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Propionatos/farmacología , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/genética
8.
Calcif Tissue Int ; 97(1): 69-79, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25987164

RESUMEN

Vitamin D and FGF23 play a major role in calcium/phosphate balance. Vitamin D may control bone resorption but the potential role of FGF23 has never been evaluated. The objective of this study was therefore to compare the effects of vitamin D and FGF23 on osteoclast differentiation and activity in human monocyte-derived osteoclasts. Human monocytes, purified from blood of healthy donors, were incubated with M-CSF and RANKL to obtain mature multinucleated osteoclasts (MNC). Experiments were carried out to assess the effects of FGF23 as compared to native vitamin D (25-D) and active vitamin D (1,25-D) on osteoclast differentiation and on bone-resorbing osteoclast activity. Additional experiments with the pan fibroblast growth factor receptor inhibitor (FGFR-i) were performed. Phosphorylation Akt and Erk pathways were analyzed by Western blot analyses. Both 1,25-D and FGF23, to a lesser extent, significantly inhibited osteoclastogenesis at early stages; when adding FGFR-i, osteoclast formation was restored. Biochemical experiments showed an activation of the Akt and Erk pathways under FGF23 treatment. In contrast, in terms of activity, 1,25-D had no effect on resorption, whereas FGF23 slightly but significantly increased bone resorption; 25-D had no effects on either differentiation or on activity. These data show that 1,25-D inhibits osteoclastogenesis without regulating osteoclast-mediated bone resorption activity; FGF23 has biphasic effects on osteoclast physiology, inhibiting osteoclast formation while stimulating slightly osteoclast activity. These results may be of importance and taken into account in chronic kidney disease when therapies modulating FGF23 are available.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/farmacología , Osteoclastos/efectos de los fármacos , Vitamina D/farmacología , Resorción Ósea/tratamiento farmacológico , Células Cultivadas , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Humanos , Factor Estimulante de Colonias de Macrófagos/metabolismo , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Osteoclastos/metabolismo , Vitamina D/metabolismo
9.
J Cell Sci ; 125(Pt 16): 3790-800, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22553210

RESUMEN

Multinucleated muscle fibres arise by fusion of precursor cells called myoblasts. We previously showed that CKIP-1 ectopic expression in C2C12 myoblasts increased cell fusion. In this work, we report that CKIP-1 depletion drastically impairs C2C12 myoblast fusion in vitro and in vivo during zebrafish muscle development. Within developing fast-twich myotome, Ckip-1 localises at the periphery of fast precursor cells, closed to the plasma membrane. Unlike wild-type myoblasts that form spatially arrayed multinucleated fast myofibres, Ckip-1-deficient myoblasts show a drastic reduction in fusion capacity. A search for CKIP-1 binding partners identified the ARPC1 subunit of Arp2/3 actin nucleation complex essential for myoblast fusion. We demonstrate that CKIP-1, through binding to plasma membrane phosphoinositides via its PH domain, regulates cell morphology and lamellipodia formation by recruiting the Arp2/3 complex at the plasma membrane. These results establish CKIP-1 as a regulator of cortical actin that recruits the Arp2/3 complex at the plasma membrane essential for muscle precursor elongation and fusion.


Asunto(s)
Proteínas Portadoras/fisiología , Fusión de Membrana/fisiología , Mioblastos/citología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Fusión Celular , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mamíferos , Ratones , Mioblastos/metabolismo , Transfección , Pez Cebra
10.
EMBO J ; 28(6): 686-96, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19197242

RESUMEN

Bone undergoes continuous remodelling throughout adult life, and the equilibrium between bone formation by osteoblasts and bone resorption by osteoclasts defines the final bone mass. Here we show that Snail1 regulates this balance by controlling osteoblast differentiation. Snail1 is necessary for the early steps of osteoblast development, and it must be downregulated for their final differentiation. At the molecular level, Snail1 controls bone mass by repressing the transcription of both the osteoblast differentiation factor Runx2 and the vitamin D receptor (VDR) genes in osteoblasts. Sustained activation of Snail1 in transgenic mice provokes deficient osteoblast differentiation, which, together with the loss of vitamin D signalling in the bone, also impairs osteoclastogenesis. Indeed, the mineralisation of the bone matrix is severely affected, leading to hypocalcemia-independent osteomalacia. Our data show that the impact of Snail1 activity on the osteoblast population regulates the course of bone cells differentiation and ensures normal bone remodelling.


Asunto(s)
Huesos/metabolismo , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Regulación de la Expresión Génica , Osteoblastos/citología , Receptores de Calcitriol/genética , Factores de Transcripción/metabolismo , Animales , Remodelación Ósea , Huesos/patología , Calcificación Fisiológica , Diferenciación Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Fluoresceínas/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Tamaño de los Órganos , Osteoblastos/metabolismo , Osteoclastos/citología , Osteoclastos/metabolismo , Osteomalacia/genética , Osteomalacia/fisiopatología , Receptores de Calcitriol/metabolismo , Factores de Transcripción de la Familia Snail , Transcripción Genética
11.
J Clin Endocrinol Metab ; 107(12): 3275-3286, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36112422

RESUMEN

CONTEXT: X-linked hypophosphatemia (XLH) is a rare genetic disease caused by a primary excess of fibroblast growth factor 23 (FGF23). FGF23 has been associated with inflammation and impaired osteoclastogenesis, but these pathways have not been investigated in XLH. OBJECTIVE: This work aimed to evaluate whether XLH patients display peculiar inflammatory profile and increased osteoclastic activity. METHODS: We performed a prospective, multicenter, cross-sectional study analyzing transcript expression of 8 inflammatory markers (Il6, Il8, Il1ß, CXCL1, CCL2, CXCR3, Il1R, Il6R) by real-time quantitative polymerase chain reaction on peripheral blood mononuclear cells (PBMCs) purified from total blood samples extracted from patients and healthy control individuals. The effect of native/active vitamin D on osteoclast formation was also assessed in vitro from XLH patients' PBMCs. RESULTS: In total, 28 XLH patients (17 children, among them 6 undergoing standard of care [SOC] and 11 burosumab therapy) and 19 controls were enrolled. Expression of most inflammatory markers was significantly increased in PBMCs from XLH patients compared to controls. No differences were observed between the burosumab and SOC subgroups. Osteoclast formation was significantly impaired in XLH patients. XLH mature osteoclasts displayed higher levels of inflammatory markers, being however lower in cells derived from the burosumab subgroup (as opposed to SOC). CONCLUSION: We describe for the first time a peculiar inflammatory profile in XLH. Since XLH patients have a propensity to develop arterial hypertension, obesity, and enthesopathies, and because inflammation can worsen these clinical outcomes, we hypothesize that inflammation may play a critical role in these extraskeletal complications of XLH.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Hipofosfatemia , Niño , Humanos , Raquitismo Hipofosfatémico Familiar/genética , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Estudios Prospectivos , Leucocitos Mononucleares/metabolismo , Estudios Transversales , Factores de Crecimiento de Fibroblastos , Biomarcadores , Inflamación
12.
Cells ; 10(9)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34572146

RESUMEN

Bone complications of cystinosis have been recently described. The main objectives of this paper were to determine in vitro the impact of CTNS mutations and cysteamine therapy on human osteoclasts and to carry out a genotype-phenotype analysis related to osteoclastic differentiation. Human osteoclasts were differentiated from peripheral blood mononuclear cells (PBMCs) and were treated with increasing doses of cysteamine (0, 50, 200 µM) and then assessed for osteoclastic differentiation. Results are presented as median (min-max). A total of 17 patients (mainly pediatric) were included, at a median age of 14 (2-61) years, and a eGFR of 64 (23-149) mL/min/1.73 m2. Most patients (71%) were under conservative kidney management (CKM). The others were kidney transplant recipients. Three functional groups were distinguished for CTNS mutations: cystinosin variant with residual cystin efflux activity (RA, residual activity), inactive cystinosin variant (IP, inactive protein), and absent protein (AP). PBMCs from patients with residual cystinosin activity generate significantly less osteoclasts than those obtained from patients of the other groups. In all groups, cysteamine exerts an inhibitory effect on osteoclastic differentiation at high doses. This study highlights a link between genotype and osteoclastic differentiation, as well as a significant impact of cysteamine therapy on this process in humans.


Asunto(s)
Cisteamina/farmacología , Cistinosis/genética , Osteoclastos/metabolismo , Adolescente , Adulto , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Diferenciación Celular/efectos de los fármacos , Niño , Preescolar , Cisteamina/metabolismo , Cistinosis/metabolismo , Cistinosis/fisiopatología , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad , Mutación , Osteoclastos/efectos de los fármacos , Fenotipo
13.
Biomolecules ; 11(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396412

RESUMEN

Rheumatoid arthritis is characterized by synovial inflammation and irreversible bone erosions, both highlighting the immense reciprocal relationship between the immune and bone systems, designed osteoimmunology two decades ago. Osteoclast-mediated resorption at the interface between synovium and bone is responsible for the articular bone erosions. The main triggers of this local bone resorption are autoantibodies directed against citrullinated proteins, as well as pro-inflammatory cytokines and the receptor activator of nuclear factor-κB ligand, that regulate both the formation and activity of the osteoclast, as well as immune cell functions. In addition, local bone loss is due to the suppression of osteoblast-mediated bone formation and repair by inflammatory cytokines. Similarly, inflammation affects systemic bone remodeling in rheumatoid arthritis with the net increase in bone resorption, leading to systemic osteoporosis. This review summarizes the substantial progress that has been made in understanding the pathophysiology of systemic and local bone loss in rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide/metabolismo , Remodelación Ósea/genética , Resorción Ósea/metabolismo , Inflamación/metabolismo , Artritis Reumatoide/patología , Autoanticuerpos/metabolismo , Resorción Ósea/patología , Diferenciación Celular/genética , Humanos , Inflamación/patología , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Membrana Sinovial/metabolismo , Membrana Sinovial/patología
14.
J Bone Miner Res ; 35(11): 2265-2274, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32598518

RESUMEN

Active vitamin D analogs and calcimimetics are the main therapies used for treating secondary hyperparathyroidism (SHPT) in patients with chronic kidney disease (CKD). Peripheral blood mononuclear cells of 19 pediatric patients with CKD1-5D and 6 healthy donors (HD) were differentiated into mature osteoclasts with receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). The effects of single or combined treatment with active vitamin D (1.25-D) and/or calcimimetic KP2326 were evaluated on osteoclastic differentiation and osteoclastic-mediated bone resorption. Although 1.25-D inhibited osteoclastic differentiation, a significant resistance to 1.25-D was observed when glomerular filtration rate decreased. A significant albeit less important inhibitory effect of KP2326 on osteoclastic differentiation was also found both in cells derived from HD and CKD patients, through a putative activation of the Erk pathway. This inhibitory effect was not modified by CKD stage. Combinatorial treatment with 1.25-D and KP2326 did not result in synergistic effects. Last, KP2326 significantly inhibited osteoclast-mediated bone resorption. Both 1.25-D and KP2326 inhibit osteoclastic differentiation, however, to a different extent. There is a progressive resistance to 1.25-D in advanced CKD that is not found with KP2326. KP2326 also inhibits bone resorption. Given that 1.25-D has no effect on osteoclastic resorption activity and that calcimimetics also have direct anabolic effects on osteoblasts, there is an experimental rationale that could favor the use of decreased doses of 1.25-D with low doses of calcimimetics in SHPT in dialysis to improve the underlying osteodystrophy. However, this last point deserves confirmatory clinical studies. © 2020 American Society for Bone and Mineral Research.


Asunto(s)
Resorción Ósea , Diferenciación Celular/efectos de los fármacos , Insuficiencia Renal Crónica , Vitamina D/uso terapéutico , Resorción Ósea/tratamiento farmacológico , Niño , Humanos , Leucocitos Mononucleares , Factor Estimulante de Colonias de Macrófagos , Osteoclastos , Ligando RANK , Insuficiencia Renal Crónica/tratamiento farmacológico , Vitamina D/análogos & derivados
15.
Artículo en Inglés | MEDLINE | ID: mdl-32330664

RESUMEN

Lysphosphatidic acid (LPA) is a major natural bioactive lipid mediator whose biological functions affect multiple organs. These include bone as demonstrated by global Lpar1-knockout mice (Lpar1-/-) which present a bone growth defect. LPA acts on all bone cells including osteoblasts, that are responsible for bone formation, and osteoclasts, which are specialized cells that resorb bone. LPA appears as a potential new coupling molecule during bone remodeling. LPA1 is the most ubiquitous LPA receptor among the six LPA receptor family members (LPA1-6). To better understand the specific role of LPA via its receptor LPA1 in osteoblastic cell lineage we generated osteoblast-specific Lpar1 knockout mice (Lpar1-∆Ob) by crossing Lpar1flox/flox and Osx:Cre+ mouse lines. Lpar1-∆Ob mice do not recapitulate the bone defects of Lpar1-/- mice but revealed reduced bone mineralization and decreased cortical thickness, as well as increased bone porosity associated with an augmentation in the lacunae areas of osteocyte and their apoptotic yield. In vitro, primary Lpar1-∆Ob and immortalized cl1-Ob-Lpar1-/- osteoblasts revealed a remarkable premature expression of alkaline phosphatase, reduced cell proliferation associated with decreased YAP-P nuclear accumulation, and reduced mineralization activity. Osteocyte specification is markedly impaired as demonstrated by reduced expression of early (E11) and late (DMP1, DKK1, SOST) osteocyte markers ex vivo in enriched osteocytic fractions of Lpar1-∆Ob mouse bone explants. In addition, E11 expression and dendrite formation induced by FGF2 are markedly impaired in both primary Lpar1-∆Ob and immortalized cl1-Ob-Lpar1-/- osteoblasts. Taken together these results suggest a new role for LPA in bone mass control via bone mineralization and osteocyte function.


Asunto(s)
Osteoblastos/metabolismo , Osteocitos/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Animales , Densidad Ósea , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis , Receptores del Ácido Lisofosfatídico/deficiencia , Receptores del Ácido Lisofosfatídico/genética
16.
Front Immunol ; 10: 679, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001277

RESUMEN

Over the past two decades, the field of osteoimmunology has emerged in response to a range of evidence demonstrating the reciprocal relationship between the immune system and bone. In particular, localized bone loss, in the form of joint erosions and periarticular osteopenia, as well as systemic osteoporosis, caused by inflammatory rheumatic diseases including rheumatoid arthritis, the prototype of inflammatory arthritis has highlighted the importance of this interplay. Osteoclast-mediated resorption at the interface between synovium and bone is responsible for the joint erosion seen in patients suffering from inflammatory arthritis. Clinical studies have helped to validate the impact of several pathways on osteoclast formation and activity. Essentially, the expression of pro-inflammatory cytokines as well as Receptor Activator of Nuclear factor κB Ligand (RANKL) is, both directly and indirectly, increased by T cells, stimulating osteoclastogenesis and resorption through a crucial regulator of immunity, the Nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1). Furthermore, in rheumatoid arthritis, autoantibodies, which are accurate predictors both of the disease and associated structural damage, have been shown to stimulate the differentiation of osteoclasts, resulting in localized bone resorption. It is now also evident that osteoblast-mediated bone formation is impaired by inflammation both in joints and the skeleton in rheumatoid arthritis. This review summarizes the substantial progress that has been made in understanding the pathophysiology of bone loss in inflammatory rheumatic disease and highlights therapeutic targets potentially important for the cure or at least an alleviation of this destructive process.


Asunto(s)
Resorción Ósea/inmunología , Fiebre Reumática/inmunología , Animales , Autoanticuerpos/inmunología , Resorción Ósea/patología , Humanos , Factores de Transcripción NFATC/inmunología , Ligando RANK/inmunología , Fiebre Reumática/patología
17.
Front Pharmacol ; 10: 667, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275146

RESUMEN

Breast cancer with bone metastasis is essentially incurable with current anticancer therapies. The bone morphogenetic protein (BMP) pathway is an attractive therapeutic candidate, as it is involved in the bone turnover and in cancer cell formation and their colonization of distant organs such as the bone. We previously reported that in breast cancer cells, the ZNF217 oncogene drives BMP pathway activation, increases the metastatic growth rate in the bone, and accelerates the development of severe osteolytic lesions in mice. In the present study, we aimed at investigating the impact of the LDN-193189 compound, a potent inhibitor of the BMP type I receptor, on metastasis development in vivo. ZNF217-revLuc cells were injected into the left ventricle of nude mice (n = 16) while control mice (n = 13) were inoculated with control pcDNA6-revLuc cells. Mice from each group were treated or not with LDN-193189 for 35 days. We found that systemic LDN-193189 treatment of mice significantly enhanced metastasis development, by increasing both the number and the size of metastases. In pcDNA6-revLuc-injected mice, LDN-193189 also affected the kinetics of metastasis emergence. Altogether, these data suggest that in vivo, LDN-193189 might affect the interaction between breast cancer cells and the bone environment, favoring the emergence and development of multiple metastases. Hence, our report highlights the importance of the choice of drugs and therapeutic strategies used in the management of bone metastases.

18.
Arthritis Rheumatol ; 71(11): 1801-1811, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31162832

RESUMEN

OBJECTIVE: The severity of rheumatoid arthritis (RA) correlates directly with bone erosions arising from osteoclast (OC) hyperactivity. Despite the fact that inflammation may be controlled in patients with RA, those in a state of sustained clinical remission or low disease activity may continue to accrue erosions, which supports the need for treatments that would be suitable for long-lasting inhibition of OC activity without altering the physiologic function of OCs in bone remodeling. Autotaxin (ATX) contributes to inflammation, but its role in bone erosion is unknown. METHODS: ATX was targeted by inhibitory treatment with pharmacologic drugs and also by conditional inactivation of the ATX gene Ennp2 in murine OCs (ΔATXC tsk ). Arthritic and erosive diseases were studied in human tumor necrosis factor-transgenic (hTNF+/- ) mice and mice with K/BxN serum transfer-induced arthritis. Systemic bone loss was also analyzed in mice with lipopolysaccharide (LPS)-induced inflammation and estrogen deprivation. Joint inflammation and bone erosion were assessed by histology and micro-computed tomography. The role of ATX in RA was also examined in OC differentiation and activity assays. RESULTS: OCs present at sites of inflammation overexpressed ATX. Pharmacologic inhibition of ATX in hTNF+/- mice, as compared to vehicle-treated controls, significantly mitigated focal bone erosion (36% decrease; P < 0.05) and systemic bone loss (43% decrease; P < 0.05), without affecting synovial inflammation. OC-derived ATX was revealed to be instrumental in OC bone resorptive activity and was up-regulated by the inflammation elicited in the presence of TNF or LPS. Specific loss of ATX in OCs from mice subjected to ovariectomy significantly protected against the systemic bone loss and erosion that had been induced with LPS and K/BxN serum treatments (30% reversal of systemic bone loss [P < 0.01]; 55% reversal of erosion [P < 0.001]), without conferring bone-protective properties. CONCLUSION: Our results identify ATX as a novel OC factor that specifically controls inflammation-induced bone erosions and systemic bone loss. Therefore, ATX inhibition offers a novel therapeutic approach for potentially preventing bone erosion in patients with RA.


Asunto(s)
Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Resorción Ósea/metabolismo , Osteoclastos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Resorción Ósea/diagnóstico por imagen , Resorción Ósea/inmunología , Calcáneo/diagnóstico por imagen , Femenino , Fémur/diagnóstico por imagen , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Transgénicos , Ovariectomía , Astrágalo/diagnóstico por imagen , Factor de Necrosis Tumoral alfa/genética , Microtomografía por Rayos X
19.
Oncotarget ; 9(69): 33170-33185, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30237860

RESUMEN

Autotaxin (ATX) promotes cancer cell metastasis through the production of lysophosphatidic acid (LPA). ATX binds to αvß3 integrins controlling metastasis of breast cancer cells. We screened a series of cancer cell lines derived from diverse human and mouse solid tumors for the capacity of binding to ATX and found only a modest correlation with their level of αvß3 integrin expression. These results strongly suggested the existence of another cell surface ATX-interacting factor. Indeed, ATXα has been shown to bind heparan-sulfate chains because of its unique polybasic insertion sequence, although the biological significance is unknown. We demonstrated here, that among all cell surface heparan-sulfate proteoglycans, syndecan-4 (SDC4) was essential for cancer cell interaction with ATXß but was restrained by heparan-sulfate chains. In addition, exogenous ATXß-induced MG63 osteosarcoma cell proliferation required physical interaction of ATXß with the cell surface via an SDC4-dependent mechanism. In a preclininal mouse model, targeting SDC4 on 4T1 mouse breast cancer cells inhibited early bone metastasis formation. Furthermore, SDC4-prometastatic activity was totally abolished in absence of ATX expression. In conclusion our results determined that ATX and SDC4 are engaged in a reciprocal collaboration for cancer cell metastasis providing the rational for the development of novel anti-metastasis therapies.

20.
Eur J Cell Biol ; 97(8): 568-579, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30424898

RESUMEN

Osteoclasts are the main cells responsible for the resorption of mineralized extracellular matrices. They are the major targets for anti-resorptive therapies to manage osteoporosis, a major public health problem. Osteoclasts are giant multinucleated cells that can organize their a unique adhesion structure based on a belt of podosomes, which is the keystone of the bone resorption apparatus. We combined differential transcriptomics and siRNA screening approaches to get a broader view of cytoskeletal regulators that participate in the control of osteoclast cytoskeleton and identify novel regulators of bone resorption by osteoclasts. We identified 20 new candidate regulators of osteoclasts cytoskeleton including Fkbp15, Spire1, Tacc2 and RalA, for which we confirmed they are necessary for proper organization of the podosome belt. We also showed that Anillin, well known for its role during cytokinesis, is essential in osteoclasts for correct podosome patterning and efficient bone resorption. In particular, Anillin controls the levels of the GTPase RhoA, a known regulator of osteoclast cytoskeleton and resorption activity. Finally, we set up and validated an automated imaging strategy based on open-source software for automatic and objective measurement of actin cytoskeleton organization in osteoclasts. We provide these pipelines that are useful to automatically assess the effect of collections of siRNAs or chemical compounds on osteoclast cytoskeleton or differentiation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Resorción Ósea/metabolismo , Resorción Ósea/patología , Proteínas Contráctiles/metabolismo , Imagenología Tridimensional , Mitosis , Osteoclastos/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Automatización , Proteínas del Citoesqueleto/metabolismo , Silenciador del Gen , Ratones Endogámicos C57BL , Podosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA