Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(26): e2119686119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35737838

RESUMEN

Allostery is the phenomenon of coupling between distal binding sites in a protein. Such coupling is at the crux of protein function and regulation in a myriad of scenarios, yet determining the molecular mechanisms of coupling networks in proteins remains a major challenge. Here, we report mechanisms governing pH-dependent myristoyl switching in monomeric hisactophilin, whereby the myristoyl moves between a sequestered state, i.e., buried within the core of the protein, to an accessible state, in which the myristoyl has increased accessibility for membrane binding. Measurements of the pH and temperature dependence of amide chemical shifts reveal protein local structural stability and conformational heterogeneity that accompany switching. An analysis of these measurements using a thermodynamic cycle framework shows that myristoyl-proton coupling at the single-residue level exists in a fine balance and extends throughout the protein. Strikingly, small changes in the stereochemistry or size of core and surface hydrophobic residues by point mutations readily break, restore, or tune myristoyl switch energetics. Synthesizing the experimental results with those of molecular dynamics simulations illuminates atomistic details of coupling throughout the protein, featuring a large network of hydrophobic interactions that work in concert with key electrostatic interactions. The simulations were critical for discerning which of the many ionizable residues in hisactophilin are important for switching and identifying the contributions of nonnative interactions in switching. The strategy of using temperature-dependent NMR presented here offers a powerful, widely applicable way to elucidate the molecular mechanisms of allostery in proteins at high resolution.


Asunto(s)
Proteínas de Microfilamentos , Proteínas Protozoarias , Genes de Cambio , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Transducción de Señal , Electricidad Estática
2.
Breast Cancer Res ; 26(1): 78, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750591

RESUMEN

BACKGROUND: Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS: Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS: Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION: Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.


Asunto(s)
Células T Asesinas Naturales , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Femenino , Ratones , Células T Asesinas Naturales/inmunología , Viroterapia Oncolítica/métodos , Humanos , Línea Celular Tumoral , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Inmunoterapia/métodos , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/inmunología , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Terapia Combinada , Metástasis de la Neoplasia , Vesiculovirus/genética , Células Dendríticas/inmunología , Neoplasias de la Mama/terapia , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad
3.
Am J Physiol Lung Cell Mol Physiol ; 323(6): L676-L682, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36218276

RESUMEN

The in utero environment is sensitive to toxicant exposure, altering the health and growth of the fetus, and thus sensitive to contaminant exposure. Though recent clinical data suggest that e-cigarette use does no further harm to birth outcomes than a nicotine patch, this does not account for the effects of vaping during pregnancy on the long-term health of offspring. Pregnant mice were exposed to: 1) e-cigarette vapor with nicotine (PV + Nic; 2% Nic in 50:50 propylene glycol: vegetable glycerin), 2) e-cigarette vapor without nicotine [PV; (50:50 propylene glycol:vegetable glycerin)], or 3) HEPA filtered air (FA). Dams were removed from exposure upon giving birth. At 5 mo of age, pulmonary function tests on the offspring revealed female and male mice from the PV group had greater lung stiffness (Ers) and alveolar stiffness (H) compared with the FA group. Furthermore, baseline compliance (Crs) was reduced in female mice from the PV group and in male mice from the PV and PV + Nic groups. Lastly, female mice had decreased forced expiratory volume (FEV0.1) in the PV group, but not in the male groups, compared with the FA group. Lung histology revealed increased collagen deposition around the vessels/airways and in alveolar tissue in PV and PV + Nic groups. Furthermore, goblet hyperplasia was observed in PV male and PV/PV + Nic female mice. Our work shows that in utero exposure to e-cigarette vapor, regardless of nicotine presence, causes lung dysfunction and structural impairments that persist in the offspring to adulthood.


Asunto(s)
Cigarrillo Electrónico a Vapor , Sistemas Electrónicos de Liberación de Nicotina , Embarazo , Masculino , Femenino , Ratones , Animales , Cigarrillo Electrónico a Vapor/toxicidad , Nicotina/toxicidad , Glicerol , Pulmón , Propilenglicol/toxicidad
4.
Gen Comp Endocrinol ; 300: 113632, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002449

RESUMEN

Iodine, an essential component of thyroid hormones, can only be obtained through the diet. The sodium iodide symporter (NIS) transports iodide across mammalian intestinal and thyroid epithelia to deliver iodide for thyroid hormone production. Using reverse transcription-polymerase chain reaction (RT-PCR) we confirmed that mRNA for a homolog of mammalian NIS is expressed in comparable locations, both sub-pharyngeal thyroid tissue and intestine, in multiple teleost fish species, supporting a conserved mechanism for intestinal-thyroid iodine transport across vertebrates. To determine when in embryogenesis NIS expression is initiated we utilized in situ hybridization (ISH) during development of zebrafish (Danio rerio) embryos. This revealed expression of nis as early as 2 days post fertilization (dpf) along the dorsal surface of the yolk sac, suggesting a function to import iodine from yolk. To evaluate the potential for maternal deposition of iodine in yolk, RT-PCR and further in situ staining of ovarian tissue in gravid female zebrafish confirmed NIS mRNA presence in the ooplasm and granulosa layer of early stage follicles. This further suggests that maternally-deposited NIS mRNA may be available for early embryogenesis. Unexpectedly, ISH in embryos revealed robust nis expression in the central nervous system throughout days 2-5 days post fertilization, with adult whole brain ISH localizing expression in the hypothalamus, cerebellum, and optic tectum. RT-PCR on whole brain tissue from five species of adult fish representing three taxonomic orders likewise revealed robust CNS expression. These unexpected locations of nis expression suggest novel, as yet undescribed reproductive and neural functions of NIS in teleost species.


Asunto(s)
Regulación de la Expresión Génica , Genitales/metabolismo , Sistema Nervioso/metabolismo , Simportadores/genética , Pez Cebra/genética , Animales , Embrión no Mamífero/metabolismo , Femenino , Ovario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Simportadores/metabolismo
6.
Am J Physiol Regul Integr Comp Physiol ; 310(6): R502-12, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26739649

RESUMEN

Prolonged food deprivation in mammals typically reduces glucose, insulin, and thyroid hormone (TH) concentrations, as well as tissue deiodinase (DI) content and activity, which, collectively, suppress metabolism. However, in elephant seal pups, prolonged fasting does not suppress TH levels; it is associated with upregulation of adipose TH-mediated cellular mechanisms and adipose-specific insulin resistance. The functional relevance of this apparent paradox and the effects of glucose and insulin on TH-mediated signaling in an insulin-resistant tissue are not well defined. To address our hypothesis that insulin increases adipose TH signaling in pups during extended fasting, we assessed the changes in TH-associated genes in response to an insulin infusion in early- and late-fasted pups. In late fasting, insulin increased DI1, DI2, and THrß-1 mRNA expression by 566%, 44%, and 267% at 60 min postinfusion, respectively, with levels decreasing by 120 min. Additionally, we performed a glucose challenge in late-fasted pups to differentiate between insulin- and glucose-mediated effects on TH signaling. In contrast to the insulin-induced effects, glucose infusion did not increase the expressions of DI1, DI2, and THrß-1 until 120 min, suggesting that glucose delays the onset of the insulin-induced effects. The data also suggest that fasting duration increases the sensitivity of adipose TH-mediated mechanisms to insulin, some of which may be mediated by increased glucose. These responses appear to be unique among mammals and to have evolved in elephant seals to facilitate their adaptation to tolerate an extreme physiological condition.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Ayuno/metabolismo , Glucosa/farmacología , Insulina/farmacología , Phocidae , Transducción de Señal/efectos de los fármacos , Hormonas Tiroideas/biosíntesis , Animales , Expresión Génica/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Infusiones Intravenosas , Yoduro Peroxidasa/biosíntesis , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Glándula Tiroides/efectos de los fármacos , Receptores beta de Hormona Tiroidea/biosíntesis , Hormonas Tiroideas/sangre , Hormonas Tiroideas/genética
7.
Hum Mol Genet ; 22(17): 3415-24, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23656793

RESUMEN

The loss of functional Survival Motor Neuron (SMN) protein due to mutations or deletion in the SMN1 gene causes autosomal recessive neurodegenerative spinal muscle atrophy (SMA). A potential treatment strategy for SMA is to upregulate the amount of SMN protein originating from the highly homologous SMN2 gene, compensating in part for the absence of the functional SMN1 gene. We have previously shown that in vitro activation of the p38 pathway stabilizes and increases SMN mRNA levels leading to increased SMN protein levels. In this report, we explore the impact of the p38 activating, FDA-approved, blood brain barrier permeating compound celecoxib on SMN levels in vitro and in a mouse model of SMA. We demonstrate a significant induction of SMN protein levels in human and mouse neuronal cells upon treatment with celecoxib. We show that activation of the p38 pathway by low doses celecoxib increases SMN protein in a HuR protein-dependent manner. Furthermore, celecoxib treatment induces SMN expression in brain and spinal cord samples of wild-type mice in vivo. Critically, celecoxib treatment increased SMN levels, improved motor function and enhanced survival in a severe SMA mouse model. Our results identify low dose celecoxib as a potential new member of the SMA therapeutic armamentarium.


Asunto(s)
Encéfalo/efectos de los fármacos , Pirazoles/farmacología , Médula Espinal/efectos de los fármacos , Atrofias Musculares Espinales de la Infancia/metabolismo , Sulfonamidas/farmacología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Adolescente , Animales , Encéfalo/metabolismo , Celecoxib , Células Cultivadas , Niño , Preescolar , Modelos Animales de Enfermedad , Proteínas ELAV/metabolismo , Regulación de la Expresión Génica , Humanos , Lactante , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Pirazoles/uso terapéutico , Médula Espinal/metabolismo , Atrofias Musculares Espinales de la Infancia/tratamiento farmacológico , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/fisiopatología , Sulfonamidas/uso terapéutico , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética
8.
Proc Natl Acad Sci U S A ; 109(44): 17839-44, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-22847411

RESUMEN

We present an integrated experimental and computational study of the molecular mechanisms by which myristoylation affects protein folding and function, which has been little characterized to date. Myristoylation, the covalent linkage of a hydrophobic C14 fatty acyl chain to the N-terminal glycine in a protein, is a common modification that plays a critical role in vital regulated cellular processes by undergoing reversible energetic and conformational switching. Coarse-grained folding simulations for the model pH-dependent actin- and membrane-binding protein hisactophilin reveal that nonnative hydrophobic interactions of the myristoyl with the protein as well as nonnative electrostatic interactions have a pronounced effect on folding rates and thermodynamic stability. Folding measurements for hydrophobic residue mutations of hisactophilin and atomistic simulations indicate that the nonnative interactions of the myristoyl group in the folding transition state are nonspecific and robust, and so smooth the energy landscape for folding. In contrast, myristoyl interactions in the native state are highly specific and tuned for sensitive control of switching functionality. Simulations and amide hydrogen exchange measurements provide evidence for increases as well as decreases in stability localized on one side of the myristoyl binding pocket in the protein, implicating strain and altered dynamics in switching. The effects of folding and function arising from myristoylation are profoundly different from the effects of other post-translational modifications.


Asunto(s)
Ácido Mirístico/química , Pliegue de Proteína , Proteínas/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Electricidad Estática , Termodinámica
9.
J Bacteriol ; 196(23): 3992-4000, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25182492

RESUMEN

Norepinephrine (NE), the primary neurotransmitter of the sympathetic nervous system, has been reported to be a chemoattractant for enterohemorrhagic Escherichia coli (EHEC). Here we show that nonpathogenic E. coli K-12 grown in the presence of 2 µM NE is also attracted to NE. Growth with NE induces transcription of genes encoding the tyramine oxidase, TynA, and the aromatic aldehyde dehydrogenase, FeaB, whose respective activities can, in principle, convert NE to 3,4-dihydroxymandelic acid (DHMA). Our results indicate that the apparent attractant response to NE is in fact chemotaxis to DHMA, which was found to be a strong attractant for E. coli. Only strains of E. coli K-12 that produce TynA and FeaB exhibited an attractant response to NE. We demonstrate that DHMA is sensed by the serine chemoreceptor Tsr and that the chemotaxis response requires an intact serine-binding site. The threshold concentration for detection is ≤5 nM DHMA, and the response is inhibited at DHMA concentrations above 50 µM. Cells producing a heterodimeric Tsr receptor containing only one functional serine-binding site still respond like the wild type to low concentrations of DHMA, but their response persists at higher concentrations. We propose that chemotaxis to DHMA generated from NE by bacteria that have already colonized the intestinal epithelium may recruit E. coli and other enteric bacteria that possess a Tsr-like receptor to preferred sites of infection.


Asunto(s)
Quimiotaxis , Escherichia coli K12/fisiología , Ácidos Mandélicos/metabolismo , Norepinefrina/metabolismo , Aldehído Oxidorreductasas/biosíntesis , Aldehído Oxidorreductasas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Perfilación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo , Monoaminooxidasa/biosíntesis , Monoaminooxidasa/genética , Transcripción Genética
10.
J Exp Biol ; 216(Pt 24): 4647-54, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24307712

RESUMEN

Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrß-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5-7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic-pituitary-thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrß-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism.


Asunto(s)
Privación de Alimentos/fisiología , Yoduro Peroxidasa/genética , ARN Mensajero/genética , Phocidae/psicología , Receptores beta de Hormona Tiroidea/genética , Animales , Ayuno/sangre , Ayuno/fisiología , Yoduro Peroxidasa/análisis , Metabolismo de los Lípidos , Phocidae/sangre , Phocidae/genética , Receptores beta de Hormona Tiroidea/análisis , Hormonas Tiroideas/sangre , Hormonas Tiroideas/metabolismo , Regulación hacia Arriba , Yodotironina Deyodinasa Tipo II
11.
Artículo en Inglés | MEDLINE | ID: mdl-23796823

RESUMEN

Thyroid (TH) and growth (GH) hormones, and insulin-like growth factor I (IGF-I) are anabolic regulators in fish and responsive to nutrient intake. A study was conducted to determine if previously reported growth effects of dietary arginine (ARG) in channel catfish were related to the activation of endocrine axes. In a first experiment, catfish were fed incremental levels of ARG (0.5 - 4% of diet) for 6 weeks and sampled at 2-week intervals. In a second experiment, fasted (48h) fish were fed a single ration of ARG (0.5 or 4% of diet) and sampled at various intervals (0 to 72h postprandial, PP). Experiment 1 did not reveal any influence of ARG on circulating TH, GH, or IGF-I despite the significantly increased growth of fish fed ARG-enriched diets. In experiment 2, feeding the 4% ARG diet significantly increased the amplitude of pulsatile plasma GH levels and also significantly increased IGF-I mRNA in liver and muscle, (at 2h PP) and plasma IGF-I levels (at 6h PP). Although relatively infrequent sampling failed to reveal alterations in TH or GH levels in response to ARG-induced growth activation, PP high frequency sampling unveiled high amplitude pulsatile GH secretions and may be important in activating IGF production in target tissues. Additionally, expressed and secreted IGF-I exhibited discernible patterns which closely correlate with ARG-induced growth effects in catfish.


Asunto(s)
Arginina/administración & dosificación , Suplementos Dietéticos , Proteínas de Peces/sangre , Ictaluridae/crecimiento & desarrollo , Somatomedinas/metabolismo , Hormonas Tiroideas/sangre , Animales , Dieta , Explotaciones Pesqueras , Ictaluridae/sangre , Péptidos y Proteínas de Señalización Intercelular/sangre , Aumento de Peso
12.
Toxicol Lett ; 370: 66-73, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36122649

RESUMEN

Ambient particulate matter (PM) exposure increases risk for cardiopulmonary health problems which may be exacerbated in a stressful environment. Co-exposure to PM and stress characterizes the experience of many deployed military personnel and first responders but has not been thoroughly investigated. This is especially relevant to military personnel who have been exposed to high PM levels in conjunction with stressful military conflict situations. To understand the mechanisms and time-course of the health consequences following burn pit exposure, we exposed mice to moderate levels of ambient PM less than 2.5 µM in diameter (PM2.5) alone or in combination with psychological stress. We found male mice exposed to PM2.5 alone or in combination with stress had significantly reduced pulmonary function when subjected to methacholine, indicating increased airway hyperreactivity. These mice experienced increased goblet cell hyperplasia in their lungs, with no change in alveolar density. Mice exposed to PM2.5 and/or stress also exhibited reduced cardiac contractility, right ventricular (RV) output, and changes in RV capillary density and cardiac inflammatory markers. Taken together, these data indicate that short-term exposure to PM2.5 with or without stress causes a clear reduction in pulmonary and cardiac function. We believe that this model is well-suited for the study of military and other occupational exposures, and future work will identify potential mechanisms, including the inflammatory progression of these co-exposures.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Cardiopatías , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Animales , Exposición a Riesgos Ambientales , Pulmón/química , Masculino , Cloruro de Metacolina , Ratones , Material Particulado/análisis , Material Particulado/toxicidad , Estrés Psicológico/complicaciones
13.
Cell Rep ; 38(9): 110433, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35235794

RESUMEN

Phagocytosis, signal transduction, and inflammatory responses require changes in lipid metabolism. Peroxisomes have key roles in fatty acid homeostasis and in regulating immune function. We find that Drosophila macrophages lacking peroxisomes have perturbed lipid profiles, which reduce host survival after infection. Using lipidomic, transcriptomic, and genetic screens, we determine that peroxisomes contribute to the cell membrane glycerophospholipid composition necessary to induce Rho1-dependent signals, which drive cytoskeletal remodeling during macrophage activation. Loss of peroxisome function increases membrane phosphatidic acid (PA) and recruits RhoGAPp190 during infection, inhibiting Rho1-mediated responses. Peroxisome-glycerophospholipid-Rho1 signaling also controls cytoskeleton remodeling in mouse immune cells. While high levels of PA in cells without peroxisomes inhibit inflammatory phenotypes, large numbers of peroxisomes and low amounts of cell membrane PA are features of immune cells from patients with inflammatory Kawasaki disease and juvenile idiopathic arthritis. Our findings reveal potential metabolic markers and therapeutic targets for immune diseases and metabolic disorders.


Asunto(s)
Lípidos de la Membrana , Peroxisomas , Animales , Glicerofosfolípidos/metabolismo , Humanos , Metabolismo de los Lípidos , Lípidos de la Membrana/metabolismo , Ratones , Peroxisomas/metabolismo , Transducción de Señal
14.
Fish Physiol Biochem ; 36(4): 1277-90, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20563882

RESUMEN

Full-length cDNAs for thyrotropin ß (TSHß) and glycoprotein hormone α (GSUα) subunits were cloned and sequenced from the red drum (Sciaenops ocellatus). The cDNAs for TSHß (877 bp) and GSUα (661 bp) yielded predicted coding regions of 126 and 94 amino acid proteins, respectively. Both sequences contain all invariant cysteine and putative glycosylated asparagines characteristic of each as deduced by comparison with other GSUα and TSHß sequences from representative vertebrate species. Multiple protein sequence alignments show that each subunit shares highest identity (79% for the TSHß and 86% for the GSUα) with perciform fish. Furthermore, in a single joint phylogenetic analysis, each subunit segregates most closely with corresponding GSUα and TSHß subunit sequences from closely related fish. Tissue-specific expression assays using RT-PCR showed expression of the TSHß subunit limited to the pituitary. GSUα mRNA was predominantly expressed in the pituitary but was also detected in the testis and ovary of adult animals. Northern hybridization revealed the presence of a single transcript for both TSHß and GSUα, each close in size to mRNA transcripts from other species. Dot blot assays from total RNA isolated from S. ocellatus pituitaries showed that in vivo T3 administration significantly diminished mRNA expression of both the TSHß and GSUα subunits and that goitrogen treatment caused a significant induction of TSHß mRNA only. Both TSHß and GSUα mRNA expression in the pituitary varied significantly in vivo over a 24-h period. Maximal expression for both TSHß and GSUα occurred during the early scotophase in relation to a peak in T4 blood levels previously documented. These results suggest the production of TSH in this species which may serve to drive daily cycles of thyroid activity. Readily quantifiable, variable, and thyroid hormone-responsive pituitary TSH expression, coupled with previously described dynamic daily cycles of circulating T4 and extensive background on the growth, nutrition, and laboratory culture of red drum, suggests that this species will serve as a useful model for experimental studies of the physiological regulation of TSH production.


Asunto(s)
Hormonas Glicoproteicas de Subunidad alfa/genética , Perciformes/genética , Filogenia , Tirotropina de Subunidad beta/genética , Animales , Secuencia de Bases , Northern Blotting , Clonación Molecular , Análisis por Conglomerados , Cartilla de ADN/genética , ADN Complementario/genética , Femenino , Perfilación de la Expresión Génica , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Immunoblotting , Masculino , Datos de Secuencia Molecular , Ovario/metabolismo , Hipófisis/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Estadísticas no Paramétricas , Testículo/metabolismo , Tirotropina de Subunidad beta/metabolismo
15.
Protein Sci ; 29(1): 306-314, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31730280

RESUMEN

Isotropic chemical shifts measured by solution nuclear magnetic resonance (NMR) spectroscopy offer extensive insights into protein structure and dynamics. Temperature dependences add a valuable dimension; notably, the temperature dependences of amide proton chemical shifts are valuable probes of hydrogen bonding, temperature-dependent loss of structure, and exchange between distinct protein conformations. Accordingly, their uses include structural analysis of both folded and disordered proteins, and determination of the effects of mutations, binding, or solution conditions on protein energetics. Fundamentally, these temperature dependences result from changes in the local magnetic environments of nuclei, but correlations with global thermodynamic parameters measured via calorimetric methods have been observed. Although the temperature dependences of amide proton and nitrogen chemical shifts are often well approximated by a linear model, deviations from linearity are also observed and may be interpreted as evidence of fast exchange between distinct conformational states. Here, we describe computational methods, accessible via the Shift-T web server, including an automated tracking algorithm that propagates initial (single temperature) 1 H15 N cross peak assignments to spectra collected over a range of temperatures. Amide proton and nitrogen temperature coefficients (slopes determined by fitting chemical shift vs. temperature data to a linear model) are subsequently calculated. Also included are methods for the detection of systematic, statistically significant deviation from linearity (curvature) in the temperature dependences of amide proton chemical shifts. The use and utility of these methods are illustrated by example, and the Shift-T web server is freely available at http://meieringlab.uwaterloo.ca/shiftt.


Asunto(s)
Biología Computacional/métodos , Proteínas/química , Calorimetría , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica , Termodinámica , Navegador Web
16.
BMJ Case Rep ; 13(3)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32213504

RESUMEN

In the wake of North America's opioid crisis, access to evidence-based treatment for opioid use disorder (OUD) is of critical importance. While buprenorphine/naloxone and methadone are currently indicated as first-line medications for the treatment of OUD, there are a proportion of individuals who do not benefit from these therapies. Recent Canadian guidelines suggest the use of alternate therapies, including slow-release oral morphine or injectable opioid agonist therapy (iOAT) for individuals unsuccessful with either methadone or buprenorphine/naloxone. While the guidelines highlight the need to intensify OUD treatment as disease severity increases, equally important is the consideration for deintensification of treatment (eg, from iOAT to an oral opioid agonist treatment (OAT) option) following successful stabilisation. Literature addressing how best to accomplish this, however, is currently lacking. Accordingly, the case presented here describes a patient that successfully transitions from iOAT to oral buprenorphine/naloxone using a novel induction approach termed microdosing.


Asunto(s)
Combinación Buprenorfina y Naloxona/administración & dosificación , Dependencia de Heroína/tratamiento farmacológico , Tratamiento de Sustitución de Opiáceos/métodos , Administración Oral , Esquema de Medicación , Sustitución de Medicamentos , Humanos , Masculino , Persona de Mediana Edad , Antagonistas de Narcóticos/administración & dosificación
17.
Gen Comp Endocrinol ; 161(1): 83-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19135445

RESUMEN

Thyrotropin (TSH), a pituitary glycoprotein hormone that stimulates the thyroid gland, has been cloned and sequenced from over a dozen teleost fish species. Although TSH is established as a primary driver of systemic thyroid status in mammals, its importance in the regulation of fish thyroid function is still uncertain. We review recent studies indicating that TSH structure is highly conserved across species representing six teleost families. These studies have found TSH messenger RNA consistently expressed in teleost pituitary tissue, although ectopic expression, particularly in gonads, has also been observed. They have also provided evidence for negative feedback inhibition of TSH expression by thyroid hormones, as well as stimulation by hypothalamic peptides. Descriptive studies have found increased TSHbeta expression associated with life history events thought to be promoted by thyroid hormones. These results, coupled with the discovery of a G-protein coupled TSH receptor in several teleost species, supports an active and conserved role for TSH in the regulation of teleost thyroid function. The relative importance of central pathways in regulating thyroid hormone provision to targets and the identity of a proposed thyrotropin-inhibiting factor in teleost fish are still unanswered questions whose resolution will be facilitated by development of methods to measure circulating TSH and its secretion from the pituitary gland.


Asunto(s)
Peces/genética , Tirotropina/genética , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Hipófisis/metabolismo , Receptores de Tirotropina/genética , Receptores de Tirotropina/metabolismo , Alineación de Secuencia , Tirotropina/química , Tirotropina/metabolismo , Tirotropina de Subunidad beta/química , Tirotropina de Subunidad beta/genética
18.
Environ Toxicol Chem ; 25(6): 1574-84, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16764476

RESUMEN

We collected adult cave swallows (Petrochelidon fulva) and cliff swallows (P. pyrrhonota) during the breeding seasons in 1999 and 2000 from eight locations along the Rio Grande from Brownsville to El Paso (unless otherwise specified, all locations are Texas, USA) and an out-of-basin reference location. Body mass, spleen mass, hepatosomatic index (HSI), gonadosomatic index (GSI), thyroxine (T4) in plasma, DNA damage measured as the half-peak coefficient of variation of DNA content (HPCV) in blood cells, as well as acetylcholinesterase and butyrylcholinesterase in brain were compared with concentrations of organochlorines, metals, and metalloids in carcasses to determine potential effects of contaminants on swallows during the breeding season. Concentrations of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) were significantly greater in swallows from El Paso than in those from most locations, except for Pharr and Llano Grande. All swallows from these three locations had p,p'-DDE concentrations of 3 microg/g wet weight or greater. Swallows from El Paso either had or shared the highest concentrations of p,p'-DDE, polychlorinated biphenyls, and 13 inorganic elements. Swallows from El Paso exhibited greater spleen mass and HPCV values as well as lower T4 values compared with those from other locations. Thyroxine was a potential biomarker of contaminant exposure in swallows of the Rio Grande, because it was negatively correlated with p,p'-DDE and Se. Spleen mass was positively correlated with selenium and HSI and negatively correlated with body mass, GSI, Mn, and Ni. Overall, the present study suggests that insectivorous birds living in areas of high agricultural and industrial activity along the Rio Grande bioaccumulate environmental contaminants. These contaminants, particularly p,p'-DDE, may be among multiple factors that impact endocrine and hematopoietic function in Rio Grande swallows.


Asunto(s)
Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Animales , Peso Corporal/efectos de los fármacos , Citometría de Flujo , Tamaño de los Órganos/efectos de los fármacos , Radioinmunoensayo , Golondrinas , Texas , Tiroxina/sangre
19.
Curr Opin Struct Biol ; 38: 26-36, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27270240

RESUMEN

Protein design is still a challenging undertaking, often requiring multiple attempts or iterations for success. Typically, the source of failure is unclear, and scoring metrics appear similar between successful and failed cases. Nevertheless, the use of sequence statistics, modularity and symmetry from natural proteins, combined with computational design both at the coarse-grained and atomistic levels is propelling a new wave of design efforts to success. Here we highlight recent examples of design, showing how the wealth of natural protein sequence and topology data may be leveraged to reduce the search space and increase the likelihood of achieving desired outcomes.


Asunto(s)
Ingeniería de Proteínas/métodos , Proteínas/química , Proteínas/genética , Secuencia de Aminoácidos , Biología Computacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA