Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Cell Res ; 388(2): 111860, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31972222

RESUMEN

There is growing evidence to support a role for the ceramide-metabolizing enzyme, glucosylceramide synthase (GCS), in resistance to a variety of chemotherapeutic agents. Whether GCS contributes to oxaliplatin resistance in colorectal cancer (CRC) has not yet been determined. We have addressed this potentially important clinical issue by examining GCS function in two panels of oxaliplatin-resistant, isogenic CRC cell lines. Compared to parental cell lines, oxaliplatin-resistant cells have increased expression of GCS protein associated with increased levels of the pro-survival ceramide metabolite, glucosylceramide (GlcCer). Inhibition of GCS expression by RNAi-mediated gene knockdown resulted in a reduction in cellular GlcCer levels, with restored sensitivity to oxaliplatin. Furthermore, oxaliplatin-resistant CRC cells displayed lower ceramide levels both basally and after treatment with oxaliplatin, compared to parental cells. GlcCer, formed by GCS-mediated ceramide glycosylation, is the precursor to a complex array of glycosphingolipids. Differences in cellular levels and species of gangliosides, a family of glycosphingolipids, were also seen between parental and oxaliplatin-resistant CRC cells. Increased Akt activation was also observed in oxaliplatin-resistant CRC cell lines, together with increased expression of the anti-apoptotic protein survivin. Finally, this study shows that GCS protein levels are greatly increased in human CRC specimens, compared to matched, normal colonic mucosa, and that high levels of UGCG gene expression are significantly associated with decreased disease-free survival in colorectal cancer patients. These findings uncover an important cellular role for GCS in oxaliplatin chemosensitivity and may provide a novel cellular target for augmenting chemotherapeutic drug effectiveness in CRC.


Asunto(s)
Ceramidas/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Glucosiltransferasas/metabolismo , Oxaliplatino/farmacología , Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Glicosilación , Humanos , Células Tumorales Cultivadas
2.
J Biol Chem ; 293(42): 16142-16159, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30143532

RESUMEN

The tuberous sclerosis complex (TSC) is a negative regulator of mTOR complex 1, a signaling node promoting cellular growth in response to various nutrients and growth factors. However, several regulators in TSC signaling still await discovery and characterization. Using pulldown and MS approaches, here we identified the TSC complex member, TBC1 domain family member 7 (TBC1D7), as a binding partner for PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), a negative regulator of Akt kinase signaling. Most TBC domain-containing proteins function as Rab GTPase-activating proteins (RabGAPs), but the crystal structure of TBC1D7 revealed that it lacks residues critical for RabGAP activity. Sequence analysis identified a putative site for both Akt-mediated phosphorylation and 14-3-3 binding at Ser-124, and we found that Akt phosphorylates TBC1D7 at Ser-124. However, this phosphorylation had no effect on the binding of TBC1D7 to TSC1, but stabilized TBC1D7. Moreover, 14-3-3 protein both bound and stabilized TBC1D7 in a growth factor-dependent manner, and a phospho-deficient substitution, S124A, prevented this interaction. The crystal structure of 14-3-3ζ in complex with a phospho-Ser-124 TBC1D7 peptide confirmed the direct interaction between 14-3-3 and TBC1D7. The sequence immediately upstream of Ser-124 aligned with a canonical ß-TrCP degron, and we found that the E3 ubiquitin ligase ß-TrCP2 ubiquitinates TBC1D7 and decreases its stability. Our findings reveal that Akt activity determines the phosphorylation status of TBC1D7 at the phospho-switch Ser-124, which governs binding to either 14-3-3 or ß-TrCP2, resulting in increased or decreased stability of TBC1D7, respectively.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas Portadoras/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Esclerosis Tuberosa , Sitios de Unión , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Humanos , Péptidos y Proteínas de Señalización Intracelular , Fosforilación , Unión Proteica , Estabilidad Proteica , Serina , Ubiquitinación , Proteínas con Repetición de beta-Transducina/metabolismo
3.
J Biol Chem ; 292(2): 446-461, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-27864369

RESUMEN

P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancer; it plays important roles in determining the pharmacokinetics of many drugs. Understanding the structural basis of P-gp, substrate polyspecificity has been hampered by its intrinsic flexibility, which is facilitated by a 75-residue linker that connects the two halves of P-gp. Here we constructed a mutant murine P-gp with a shortened linker to facilitate structural determination. Despite dramatic reduction in rhodamine 123 and calcein-AM transport, the linker-shortened mutant P-gp possesses basal ATPase activity and binds ATP only in its N-terminal nucleotide-binding domain. Nine independently determined structures of wild type, the linker mutant, and a methylated P-gp at up to 3.3 Å resolution display significant movements of individual transmembrane domain helices, which correlated with the opening and closing motion of the two halves of P-gp. The open-and-close motion alters the surface topology of P-gp within the drug-binding pocket, providing a mechanistic explanation for the polyspecificity of P-gp in substrate interactions.


Asunto(s)
Mutación Missense , Rodamina 123/química , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Transporte Biológico Activo/fisiología , Cristalografía por Rayos X , Células HeLa , Humanos , Rodamina 123/metabolismo , Especificidad por Sustrato/fisiología
4.
Mol Pharmacol ; 89(2): 263-72, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26668215

RESUMEN

Despite improvements in the management of liver cancer, the survival rate for patients with hepatocellular carcinoma (HCC) remains dismal. The survival benefit of systemic chemotherapy for the treatment of liver cancer is only marginal. Although the reasons for treatment failure are multifactorial, intrinsic resistance to chemotherapy plays a primary role. Here, we analyzed the expression of 377 multidrug resistance (MDR)-associated genes in two independent cohorts of patients with advanced HCC, with the aim of finding ways to improve survival in this poor-prognosis cancer. Taqman-based quantitative polymerase chain reaction revealed a 45-gene signature that predicts overall survival (OS) in patients with HCC. Using the Connectivity Map Tool, we were able to identify drugs that converted the gene expression profiles of HCC cell lines from ones matching patients with poor OS to profiles associated with good OS. We found three compounds that convert the gene expression profiles of three HCC cell lines to gene expression profiles associated with good OS. These compounds increase histone acetylation, which correlates with the synergistic sensitization of those MDR tumor cells to conventional chemotherapeutic agents, including cisplatin, sorafenib, and 5-fluorouracil. Our results indicate that it is possible to modulate gene expression profiles in HCC cell lines to those associated with better outcome. This approach also increases sensitization of HCC cells toward conventional chemotherapeutic agents. This work suggests new treatment strategies for a disease for which few therapeutic options exist.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/mortalidad , Línea Celular Tumoral , Estudios de Cohortes , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/mortalidad , Tasa de Supervivencia/tendencias , Resultado del Tratamiento
6.
Exp Cell Res ; 336(2): 318-28, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26101157

RESUMEN

Multidrug resistance (MDR) has been associated with expression of ABC transporter genes including P-glycoprotein (Pgp, MDR1, ABCB1). However, deregulation of apoptotic pathways also renders cells resistant to chemotherapy. To discover apoptosis-related genes affected by Pgp expression, we used the HeLa MDR-off system. We found that using doxycycline to control Pgp expression has a significant advantage over tetracycline, in that doxycycline caused less endogenous gene expression modification/perturbation, and was more potent than tetracycline in suppressing Pgp expression. Cells overexpressing Pgp have lower TNFSF10 (TRAIL) expression than their parental cells. Controlled downregulation of Pgp increased endogenous TRAIL protein expression. Also, ectopic overexpression of TRAIL in Pgp-positive cells was associated with a reduction in Pgp levels. However, cells expressing a functionally defective mutant Pgp showed an increase in TRAIL expression, suggesting that Pgp function is required for TRAIL suppression. Cells in which Pgp is knocked down by upregulation of TRAIL expression are less susceptible to TRAIL ligand (sTRAIL)-induced apoptosis. Our findings reveal an inverse correlation between functional Pgp and endogenous TRAIL expression. Pgp function plays an important role in the TRAIL-mediated apoptosis pathway by regulating endogenous TRAIL expression and the TRAIL-mediated apoptosis pathway in MDR cancer cells.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Apoptosis/genética , Resistencia a Antineoplásicos/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/biosíntesis , Línea Celular Tumoral , Regulación hacia Abajo , Doxiciclina/farmacología , Resistencia a Múltiples Medicamentos/genética , Células HeLa , Humanos , Interferencia de ARN , ARN Interferente Pequeño , Ligando Inductor de Apoptosis Relacionado con TNF/biosíntesis , Tetraciclina/farmacología
7.
J Biol Chem ; 289(31): 21473-89, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24930045

RESUMEN

Multidrug resistance (MDR) is a major obstacle to the successful chemotherapy of cancer. MDR is often the result of overexpression of ATP-binding cassette transporters following chemotherapy. A common ATP-binding cassette transporter that is overexpressed in MDR cancer cells is P-glycoprotein, which actively effluxes drugs against a concentration gradient, producing an MDR phenotype. Collateral sensitivity (CS), a phenomenon of drug hypersensitivity, is defined as the ability of certain compounds to selectively target MDR cells, but not the drug-sensitive parent cells from which they were derived. The drug tiopronin has been previously shown to elicit CS. However, unlike other CS agents, the mechanism of action was not dependent on the expression of P-glycoprotein in MDR cells. We have determined that the CS activity of tiopronin is mediated by the generation of reactive oxygen species (ROS) and that CS can be reversed by a variety of ROS-scavenging compounds. Specifically, selective toxicity of tiopronin toward MDR cells is achieved by inhibition of glutathione peroxidase (GPx), and the mode of inhibition of GPx1 by tiopronin is shown in this report. Why MDR cells are particularly sensitive to ROS is discussed, as is the difficulty in exploiting this hypersensitivity to tiopronin in the clinic.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glutatión Peroxidasa/antagonistas & inhibidores , Tiopronina/farmacología , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Glutatión Peroxidasa/química , Humanos , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Tiomalatos/farmacología
8.
Cancers (Basel) ; 15(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37568572

RESUMEN

Pancreatic neuroendocrine neoplasms (pNENs) are a heterogeneous group of tumors derived from multiple neuroendocrine origin cell subtypes. Incidence rates for pNENs have steadily risen over the last decade, and outcomes continue to vary widely due to inability to properly screen. These tumors encompass a wide range of functional and non-functional subtypes, with their rarity and slow growth making therapeutic development difficult as most clinically used therapeutics are derived from retrospective analyses. Improved molecular understanding of these cancers has increased our knowledge of the tumor biology for pNENs. Despite these advances in our understanding of pNENs, there remains a dearth of models for further investigation. In this review, we will cover the current field of pNEN models, which include established cell lines, animal models such as mice and zebrafish, and three-dimensional (3D) cell models, and compare their uses in modeling various disease aspects. While no study model is a complete representation of pNEN biology, each has advantages which allow for new scientific understanding of these rare tumors. Future efforts and advancements in technology will continue to create new options in modeling these cancers.

9.
Mol Cancer Ther ; 22(9): 1052-1062, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37487000

RESUMEN

Pancreatic neuroendocrine tumors (PNET) express high levels of somatostatin receptor type 2 (SSTR2), a unique target for both tumor imaging and therapy. This surface expression is lost in metastatic high-grade PNETs, making patients ineligible for SSTR2-targeted 177 Lutetium (Lu)-DOTATATE peptide receptor radionuclide therapy (PRRT), and represents an unmet clinical need. Here, we aimed to restore SSTR2 expression through the reversal of inhibitory epigenetic gene silencing to improve tumor responsiveness to PRRT. We first assessed human SSTR2 promoter methylation and expression levels in 96 patient samples. We then used three NET cell lines (QGP-1, BON-1, GOT-1) with variable SSTR2 expression profiles for functional in vitro studies using histone deacetylase inhibitors (HDACi). Finally, the QGP-1 xenograft mouse model, with low basal SSTR2 expression, was used to assess the therapeutic efficacy of combined HDACi and 177Lu-DOTATATE therapies. We confirm that SSTR expression is decreased and correlates with SSTR2 promoter methylation in patients with high-grade NETs. When exposed to HDACis, SSTR2 surface expression is increased in three NET cell lines in vitro. In an in vivo PNET xenograft model with low basal SSTR2 expression, our studies demonstrate significantly higher tumor uptake of SSTR2-targeted 177Lu-DOTATATE in animals pretreated with HDACis compared with controls. For the first time, we show that this higher tumor uptake results in significant antitumor response when compared with standard PRRT alone. These preclinical results provide a rationale for utilizing HDACi pretreatment to improve targeted radionuclide therapy in patients with SSTR2-negative, metastatic PNETs.


Asunto(s)
Tumores Neuroectodérmicos Primitivos , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Regulación hacia Arriba , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/radioterapia , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia
10.
Carcinogenesis ; 33(3): 475-82, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22180570

RESUMEN

Observational studies have been largely consistent in showing an inverse association between vitamin D and an individual's risk of developing colorectal cancer. Vitamin D protection is further supported by a range of preclinical colon cancer models, including carcinogen, genetic and dietary models. A large number of mechanistic studies in both humans and rodents point to vitamin D preventing cancer by regulating cell proliferation. Counterbalancing this mostly positive data are the results of human intervention studies in which supplemental vitamin D was found to be ineffective for reducing colon cancer risk. One explanation for these discrepancies is the timing of vitamin D intervention. It is possible that colon lesions may progress to a stage where they become unresponsive to vitamin D. Such a somatic loss in vitamin D responsiveness bears the hallmarks of an epigenetic change. Here, we review data supporting the chemopreventive effectiveness of vitamin D and discuss how gene silencing and other molecular changes somatically acquired during colon cancer development may limit the protection that may otherwise be afforded by vitamin D via dietary intervention. Finally, we discuss how understanding the mechanisms by which vitamin D protection is lost might be used to devise strategies to enhance its chemopreventive actions.


Asunto(s)
Anticarcinógenos/farmacología , Neoplasias del Colon/prevención & control , Resistencia a Antineoplásicos/genética , Vitamina D/farmacología , Anticarcinógenos/administración & dosificación , Proliferación Celular/efectos de los fármacos , Quimioprevención , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Silenciador del Gen , Humanos , Vitamina D/administración & dosificación
11.
Carcinogenesis ; 32(3): 343-50, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21098643

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory disease of the colonic mucosa that can dramatically increase the risk of colon cancers. In the present study, we evaluated the effects of a dietary intervention of freeze-dried black raspberries (BRB), a natural food product with antioxidant and anti-inflammatory bioactivities, on disease severity in an experimental mouse model of UC using 3% dextran sodium sulfate (DSS). C57BL/6J mice were fed either a control diet or a diet containing BRB (5 or 10%) for 7-14 days and then the extent of colonic injury was assessed. Dietary BRB markedly reduced DSS-induced acute injury to the colonic epithelium. This protection included better maintenance of body mass and reductions in colonic shortening and ulceration. BRB treatment, however, did not affect the levels of either plasma nitric oxide or colon malondialdehyde, biomarkers of oxidative stress that are otherwise increased by DSS-induced colonic injury. BRB treatment for up to 7 days suppressed tissue levels of several key pro-inflammatory cytokines, including tumor necrosis factor α and interleukin 1ß. Further examination of the inflammatory response by western blot analysis revealed that 7 day BRB treatment reduced the levels of phospho-IκBα within the colonic tissue. Colonic cyclooxygenase 2 levels were also dramatically suppressed by BRB treatment, with a concomitant decrease in the plasma prostaglandin E2 (276 versus 34 ng/ml). These findings demonstrate a potent anti-inflammatory effect of BRB during DSS-induced colonic injury, supporting its possible therapeutic or preventive role in the pathogenesis of UC and related neoplastic events.


Asunto(s)
Antiinflamatorios/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Citocinas/metabolismo , Mucosa Intestinal/efectos de los fármacos , Fitoterapia , Extractos Vegetales/farmacología , Rosaceae/química , Animales , Western Blotting , Colitis Ulcerosa/inducido químicamente , Citocinas/genética , Sulfato de Dextran/toxicidad , Dinoprostona/metabolismo , Liofilización , Frutas/química , Técnicas para Inmunoenzimas , Mucosa Intestinal/lesiones , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Polvos , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Biochem J ; 424(1): 153-61, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19723022

RESUMEN

The Rnd proteins (Rnd1, Rnd2 and Rnd3/RhoE) form a distinct branch of the Rho family of small GTPases. Altered Rnd3 expression causes changes in cytoskeletal organization and cell cycle progression. Rnd3 functions to decrease RhoA activity, but how Rnd3 itself is regulated to cause these changes is still under investigation. Unlike other Rho family proteins, Rnd3 is regulated not by GTP/GDP cycling, but at the level of expression and by post-translational modifications such as prenylation and phosphorylation. We show in the present study that, upon PKC (protein kinase C) agonist stimulation, Rnd3 undergoes an electrophoretic mobility shift and its subcellular localization becomes enriched at internal membranes. These changes are blocked by inhibition of conventional PKC isoforms and do not occur in PKCalpha-null cells or to a non-phosphorylatable mutant of Rnd3. We further show that PKCalpha directly phosphorylates Rnd3 in an in vitro kinase assay. Additionally, we provide evidence that the phosphorylation status of Rnd3 has a direct effect on its ability to block signalling from the Rho-ROCK (Rho-kinase) pathway. These results identify an additional mechanism of regulation and provide clarification of how Rnd3 modulates Rho signalling to alter cytoskeletal organization.


Asunto(s)
Proteína Quinasa C-alfa/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Western Blotting , Humanos , Ratones , Células 3T3 NIH , Fosforilación/genética , Proteína Quinasa C-alfa/genética , Ratas , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/genética
13.
J Invest Dermatol ; 139(9): 1985-1992.e10, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30905807

RESUMEN

ABCB5 is an ABC transporter that was shown to confer low-level multidrug resistance in cancer. In this study, we show that ABCB5 was mutated in 13.75% of the 640 melanoma samples analyzed. Besides nonsense mutations, two mutation hotspots were found in the ABCB5 protein, in the drug-binding pocket and the nucleotide-binding domains. Four mutations, which are representative of the mutation pattern, were selected. ATPase assays showed that these mutations resulted in a decrease in basal ATP hydrolysis by ABCB5. To select informative melanoma cell lines, mutational profiles of the clinical samples were further analyzed. This study showed mutations in the tumor suppressor CDKN2A gene and the NRAS oncogene in 62.5% and 75%, respectively of the samples that had mutations in the ABCB5 gene. No mutation was found in the tumor suppressor PTEN gene, whereas the activating V600E mutation in the BRAF oncogene was found in 25% of the samples with a mutated ABCB5 gene. Studies in four melanoma cell lines with various genetic backgrounds showed an increase in the proliferation and migration capacity of mutant ABCB5-expressing cells, suggesting that ABCB5 plays a role in the development of melanoma as a tumor suppressor gene.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Genes Supresores de Tumor , Melanoma/genética , Neoplasias Cutáneas/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Adulto , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Análisis Mutacional de ADN , Femenino , GTP Fosfohidrolasas/genética , Humanos , Hidrólisis , Masculino , Melanoma/patología , Proteínas de la Membrana/genética , Persona de Mediana Edad , Mutación , Piel/patología , Neoplasias Cutáneas/patología , Secuenciación del Exoma , Adulto Joven
14.
Mol Cell Biol ; 24(20): 8823-33, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15456858

RESUMEN

The histone amino termini have emerged as key targets for a variety of modifying enzymes that function as transcriptional coactivators and corepressors. However, an important question that has remained largely unexplored is the extent to which specific histone amino termini are required for the activating and repressive functions of these enzymes, Here we address this issue by focusing on the prototypical histone deacetylase, Rpd3p, in the budding yeast Saccharomyces cerevisiae. We show that targeting Rpd3p to a reporter gene in this yeast can partially repress transcription when either the histone H3 or the histone H4 amino terminus is deleted, indicating that the "tails" are individually dispensable for repression by Rpd3p. In contrast, we find that the effect of rpd3 gene disruption on global gene expression is considerably reduced in either a histone H3Delta1-28 (H3 lacking the amino-terminal 28 amino acids) or a histone H4(K5,8,12,16Q) (H4 with lysine residues 5, 8, 12, and 16 changed to glutamine residues) background compared to the wild-type background, indicating a requirement for one or both of these histone tails in Rpd3p-mediated regulation for many genes. These results suggest that acetylation of either the H3 or the H4 amino terminus could suffice to allow the activation of such genes. We also examine the relationship between H3 tails and H4 tails in global gene expression and find substantial overlap among the gene sets regulated by these histone tails. We also show that the effects on genome-wide expression of deleting the H3 or H4 amino terminus are similar but not identical to the effects of mutating the lysine residues in these same regions. These results indicate that the gene regulatory potential of the H3 and H4 amino termini is substantially but not entirely contained in these modifiable lysine residues.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma Fúngico , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Análisis por Conglomerados , Activación Enzimática , Genes Reporteros , Histona Desacetilasas/genética , Histonas/genética , Lisina/metabolismo , Análisis por Matrices de Proteínas , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética
15.
Nucleic Acids Res ; 30(17): 3698-705, 2002 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12202754

RESUMEN

The response of eukaryotic cells to the formation of a double-strand break (DSB) in chromosomal DNA is highly conserved. One of the earliest responses to DSB formation is phosphorylation of the C-terminal tail of H2A histones located in nucleosomes near the break. Histone variant H2AX and core histone H2A are phosphorylated in mammals and budding yeast, respectively. We demonstrate the DSB-induced phosphorylation of histone variant H2Av in Drosophila melanogaster. H2Av is a member of the H2AZ family of histone variants. Ser137 within an SQ motif located near the C- terminus of H2Av was phosphorylated in response to gamma-irradiation in both tissue culture cells and larvae. Phosphorylation was detected within 1 min of irradiation and detectable after only 0.3 Gy of radiation exposure. Photochemically induced DSBs, but not general oxidative damage or UV-induced nicking of DNA, caused H2Av phosphorylation, suggesting that phosphorylation is DSB specific. Imaginal disc cells from Drosophila expressing a mutant allele of H2Av with its C-terminal tail deleted, and therefore unable to be phosphorylated, were more sensitive to radiation-induced apoptosis than were wildtype controls, suggesting that phosphorylation of H2Av is important for repair of radiation-induced DSBs. These observations suggest that in addition to providing the function of an H2AZ histone, H2Av is also the functional homolog in Drosophila of H2AX.


Asunto(s)
Apoptosis/efectos de la radiación , Daño del ADN , Drosophila/genética , Histonas/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis/genética , Western Blotting , Línea Celular , ADN/genética , ADN/metabolismo , Reparación del ADN , Drosophila/metabolismo , Drosophila/efectos de la radiación , Genotipo , Histonas/genética , Larva/citología , Larva/genética , Larva/efectos de la radiación , Datos de Secuencia Molecular , Mutación , Fosforilación , Homología de Secuencia de Aminoácido
16.
Sci Rep ; 6: 20418, 2016 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-26853103

RESUMEN

Physiologic barriers such as the blood placenta barrier (BPB) and the blood brain barrier protect the underlying parenchyma from pathogens and toxins. ATP-binding cassette (ABC) transporters are transmembrane proteins found at these barriers, and function to efflux xenobiotics and maintain chemical homeostasis. Despite the plethora of ex vivo and in vitro data showing the function and expression of ABC transporters, no imaging modality exists to study ABC transporter activity in vivo at the BPB. In the present study, we show that in vitro models of the placenta possess ABCG2 activity and can specifically transport D-luciferin, the endogenous substrate of firefly luciferase. To test ABCG2 transport activity at the BPB, we devised a breeding strategy to generate a bioluminescent pregnant mouse model to demonstrate transporter function in vivo. We found that coadministering the ABCG2 inhibitors Ko143 and gefitinib with D-luciferin increased bioluminescent signal from fetuses and placentae, whereas the control P-gp inhibitor DCPQ had no effect. We believe that our bioluminescent pregnant mouse model will facilitate greater understanding of the BPB and ABCG2 activity in health and disease.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transporte Biológico/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Coriocarcinoma/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Benzotiazoles/farmacocinética , Benzotiazoles/farmacología , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/efectos de los fármacos , Western Blotting , Células Cultivadas , Coriocarcinoma/tratamiento farmacológico , Coriocarcinoma/patología , Femenino , Citometría de Flujo , Gefitinib , Luciferasas de Luciérnaga/farmacocinética , Sustancias Luminiscentes/farmacocinética , Mediciones Luminiscentes , Masculino , Ratones , Ratones Transgénicos , Placenta , Embarazo , Quinazolinas/farmacocinética , Quinazolinas/farmacología , Distribución Tisular
17.
Mol Cancer Ther ; 14(1): 90-100, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25376608

RESUMEN

Despite early positive response to platinum-based chemotherapy, the majority of ovarian carcinomas develop resistance and progress to fatal disease. Protein phosphatase 2A (PP2A) is a ubiquitous phosphatase involved in the regulation of DNA-damage response (DDR) and cell-cycle checkpoint pathways. Recent studies have shown that LB100, a small-molecule inhibitor of PP2A, sensitizes cancer cells to radiation-mediated DNA damage. We hypothesized that LB100 could sensitize ovarian cancer cells to cisplatin treatment. We performed in vitro studies in SKOV-3, OVCAR-8, and PEO1, -4, and -6 ovarian cancer lines to assess cytotoxicity potentiation, cell-death mechanism(s), cell-cycle regulation, and DDR signaling. In vivo studies were conducted in an intraperitoneal metastatic mouse model using SKOV-3/f-Luc cells. LB100 sensitized ovarian carcinoma lines to cisplatin-mediated cell death. Sensitization via LB100 was mediated by abrogation of cell-cycle arrest induced by cisplatin. Loss of the cisplatin-induced checkpoint correlated with decreased Wee1 expression, increased cdc2 activation, and increased mitotic entry (p-histone H3). LB100 also induced constitutive hyperphosphorylation of DDR proteins (BRCA1, Chk2, and γH2AX), altered the chronology and persistence of JNK activation, and modulated the expression of 14-3-3 binding sites. In vivo, cisplatin sensitization via LB100 significantly enhanced tumor growth inhibition and prevented disease progression after treatment cessation. Our results suggest that LB100 sensitizes ovarian cancer cells to cisplatin in vitro and in vivo by modulation of the DDR pathway and cell-cycle checkpoint abrogation.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Cisplatino/administración & dosificación , Neoplasias Ováricas/tratamiento farmacológico , Piperazinas/administración & dosificación , Proteína Fosfatasa 2/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Piperazinas/farmacología , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
18.
J Inorg Biochem ; 149: 45-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26021697

RESUMEN

The resistance of ovarian cancer towards front-line chemotherapy, usually cisplatin or carboplatin in combination with paclitaxel or docetaxel, remains a major clinical challenge. Resistance to these agents has been largely studied using cell lines selected for resistance to agents in vitro. We examined a series of paired cell lines derived from patients with ovarian cancer prior to chemotherapy (PEO1, PEO4, PEO14 and PEA1), and following the acquisition of resistance to a platinum-based chemotherapy regimen (PEO6, PEO23 and PEA2, respectively). All resistant patient lines showed resistance to cisplatin (2-5-fold), but this did not correspond with lowered accumulation. No general cross-resistance was observed for oxaliplatin, paclitaxel or docetaxel, and paclitaxel accumulation was not affected. PEO1 cells carrying BRCA2 mutations were hypersensitive to the PARP inhibitors olaparib and velaparib, but all other cell lines expressing functional forms of BRCA2 were less sensitive. While reduced drug accumulation was not observed, we believe these pairs of lines are of use to researchers studying Pt drug resistance and experimental therapeutics against drug-resistant ovarian cancer.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Resistencia a Antineoplásicos , Compuestos Organoplatinos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Cisplatino/uso terapéutico , Femenino , Genes BRCA2 , Humanos , Compuestos Organoplatinos/uso terapéutico , Neoplasias Ováricas/genética
19.
PLoS One ; 10(8): e0136396, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26309032

RESUMEN

The efflux transporter P-glycoprotein (P-gp) is an important mediator of various pharmacokinetic parameters, being expressed at numerous physiological barriers and also in multidrug-resistant cancer cells. Molecular cloning of homologous cDNAs is an important tool for the characterization of functional differences in P-gp between species. However, plasmids containing mouse mdr1a cDNA display significant genetic instability during cloning in bacteria, indicating that mdr1a cDNA may be somehow toxic to bacteria, allowing only clones containing mutations that abrogate this toxicity to survive transformation. We demonstrate here the presence of a cryptic promoter in mouse mdr1a cDNA that causes mouse P-gp expression in bacteria. This expression may account for the observed toxicity of mdr1a DNA to bacteria. Sigma 70 binding site analysis and GFP reporter plasmids were used to identify sequences in the first 321 bps of mdr1a cDNA capable of initiating bacterial protein expression. An mdr1a M107L cDNA containing a single residue mutation at the proposed translational start site was shown to allow sub-cloning of mdr1a in E. coli while retaining transport properties similar to wild-type P-gp. This mutant mdr1a cDNA may prove useful for efficient cloning of mdr1a in E. coli.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/genética , ADN Complementario/genética , Escherichia coli/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Sitios de Unión , Western Blotting , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Citometría de Flujo , Células HEK293 , Humanos , Ratones , Microscopía Confocal , Plásmidos/genética , Conformación Proteica , Factor sigma/metabolismo , Espectrometría de Fluorescencia
20.
Cancer Res ; 74(14): 3913-22, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24812268

RESUMEN

The platinum drugs cisplatin, carboplatin, and oxaliplatin are highly utilized in the clinic and as a consequence are extensively studied in the laboratory setting. In this study, we examined the literature and found a significant number of studies (11%-34%) in prominent cancer journals utilizing cisplatin dissolved in DMSO. However, dissolving cisplatin in DMSO for laboratory-based studies results in ligand displacement and changes to the structure of the complex. We examined the effect of DMSO on platinum complexes, including cisplatin, carboplatin, and oxaliplatin, finding that DMSO reacted with the complexes, inhibited their cytotoxicity and their ability to initiate cell death. These results render a substantial portion of the literature on cisplatin uninterpretable. Raising awareness of this significant issue in the cancer biology community is critical, and we make recommendations on appropriate solvation of platinum drugs for research.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Cisplatino/química , Dimetilsulfóxido/química , Compuestos de Platino/química , Compuestos de Platino/farmacología , Carboplatino/química , Carboplatino/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Humanos , Concentración 50 Inhibidora , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA