Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 136(6): 1017-31, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19303846

RESUMEN

The Disrupted in Schizophrenia 1 (DISC1) gene is disrupted by a balanced chromosomal translocation (1; 11) (q42; q14.3) in a Scottish family with a high incidence of major depression, schizophrenia, and bipolar disorder. Subsequent studies provided indications that DISC1 plays a role in brain development. Here, we demonstrate that suppression of DISC1 expression reduces neural progenitor proliferation, leading to premature cell cycle exit and differentiation. Several lines of evidence suggest that DISC1 mediates this function by regulating GSK3beta. First, DISC1 inhibits GSK3beta activity through direct physical interaction, which reduces beta-catenin phosphorylation and stabilizes beta-catenin. Importantly, expression of stabilized beta-catenin overrides the impairment of progenitor proliferation caused by DISC1 loss of function. Furthermore, GSK3 inhibitors normalize progenitor proliferation and behavioral defects caused by DISC1 loss of function. Together, these results implicate DISC1 in GSK3beta/beta-catenin signaling pathways and provide a framework for understanding how alterations in this pathway may contribute to the etiology of psychiatric disorders.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Transducción de Señal , beta Catenina/metabolismo , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Encéfalo/citología , Encéfalo/embriología , Embrión de Mamíferos/metabolismo , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3 beta , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Células Madre/citología , Células Madre/metabolismo
2.
Cell ; 133(5): 903-15, 2008 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-18510933

RESUMEN

We show that miR-1, a conserved muscle-specific microRNA, regulates aspects of both pre- and postsynaptic function at C. elegans neuromuscular junctions. miR-1 regulates the expression level of two nicotinic acetylcholine receptor (nAChR) subunits (UNC-29 and UNC-63), thereby altering muscle sensitivity to acetylcholine (ACh). miR-1 also regulates the muscle transcription factor MEF-2, which results in altered presynaptic ACh secretion, suggesting that MEF-2 activity in muscles controls a retrograde signal. The effect of the MEF-2-dependent retrograde signal on secretion is mediated by the synaptic vesicle protein RAB-3. Finally, acute activation of levamisole-sensitive nAChRs stimulates MEF-2-dependent transcriptional responses and induces the MEF-2-dependent retrograde signal. We propose that miR-1 refines synaptic function by coupling changes in muscle activity to changes in presynaptic function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , MicroARNs/metabolismo , Unión Neuromuscular/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Levamisol/farmacología , MicroARNs/genética , Mutación , Agonistas Nicotínicos/metabolismo , Receptores Nicotínicos/metabolismo , Transcripción Genética , Proteínas de Unión al GTP rab3/metabolismo
3.
Nat Neurosci ; 10(1): 49-57, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17128266

RESUMEN

The secretion of neurotransmitters and neuropeptides is mediated by distinct organelles-synaptic vesicles (SVs) and dense-core vesicles (DCVs), respectively. Relatively little is known about the factors that differentially regulate SV and DCV secretion. Here we show that protein kinase C-1 (PKC-1), which is most similar to the vertebrate PKC eta and epsilon isoforms, regulates exocytosis of DCVs in Caenorhabditis elegans motor neurons. Mutants lacking PCK-1 activity had delayed paralysis induced by the acetylcholinesterase inhibitor aldicarb, whereas mutants with increased PKC-1 activity had more rapid aldicarb-induced paralysis. Imaging and electrophysiological assays indicated that SV release occurred normally in pkc-1 mutants. By contrast, genetic analysis of aldicarb responses and imaging of fluorescently tagged neuropeptides indicated that mutants lacking PKC-1 had reduced neuropeptide secretion. Similar neuropeptide secretion defects were found in mutants lacking unc-31 (encoding the protein CAPS) or unc-13 (encoding Munc13). These results suggest that PKC-1 selectively regulates DCV release from neurons.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Neuronas Motoras/metabolismo , Neuropéptidos/metabolismo , Proteína Quinasa C/fisiología , Aldicarb/farmacología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas Portadoras , Inhibidores de la Colinesterasa/farmacología , Clonación Molecular/métodos , Diagnóstico por Imagen/métodos , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Exocitosis/efectos de los fármacos , Exocitosis/genética , Expresión Génica/genética , Proteínas Fluorescentes Verdes/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Neuronas Motoras/efectos de los fármacos , Músculos/efectos de los fármacos , Músculos/metabolismo , Proteínas Mutantes/fisiología , Técnicas de Placa-Clamp/métodos , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/fisiología
4.
iScience ; 24(1): 101935, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33409479

RESUMEN

Genetic variation of the 16p11.2 deletion locus containing the KCTD13 gene and of CUL3 is linked with autism. This genetic connection suggested that substrates of a CUL3-KCTD13 ubiquitin ligase may be involved in disease pathogenesis. Comparison of Kctd13 mutant (Kctd13 -/- ) and wild-type neuronal ubiquitylomes identified adenylosuccinate synthetase (ADSS), an enzyme that catalyzes the first step in adenosine monophosphate (AMP) synthesis, as a KCTD13 ligase substrate. In Kctd13 -/- neurons, there were increased levels of succinyl-adenosine (S-Ado), a metabolite downstream of ADSS. Notably, S-Ado levels are elevated in adenylosuccinate lyase deficiency, a metabolic disorder with autism and epilepsy phenotypes. The increased S-Ado levels in Kctd13 -/- neurons were decreased by treatment with an ADSS inhibitor. Lastly, functional analysis of human KCTD13 variants suggests that KCTD13 variation may alter ubiquitination of ADSS. These data suggest that succinyl-AMP metabolites accumulate in Kctd13 -/- neurons, and this observation may have implications for our understanding of 16p11.2 deletion syndrome.

5.
Neuron ; 51(3): 303-15, 2006 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-16880125

RESUMEN

Priming of synaptic vesicles (SVs) is essential for synaptic transmission. UNC-13 proteins are required for priming. Current models propose that UNC-13 stabilizes the open conformation of Syntaxin, in which the SNARE helix is available for interactions with Synaptobrevin and SNAP-25. Here we show that Tomosyn inhibits SV priming. Tomosyn contains a SNARE motif, which forms an inhibitory SNARE complex with Syntaxin and SNAP-25. Mutants lacking Tomosyn have increased synaptic transmission, an increased pool of primed vesicles, and increased abundance of UNC-13 at synapses. Behavioral, imaging, and electrophysiological studies suggest that SV priming was reconstituted in unc-13 mutants by expressing a constitutively open mutant Syntaxin, or by mutations eliminating Tomosyn. Thus, priming is modulated by the balance between Tomosyn and UNC-13, perhaps by regulating the availability of open-Syntaxin. Even when priming was restored, synaptic transmission remained defective in unc-13 mutants, suggesting that UNC-13 is also required for other aspects of secretion.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Proteínas SNARE/fisiología , Vesículas Sinápticas/fisiología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras , Datos de Secuencia Molecular , Mutación , Proteínas Qa-SNARE/fisiología , Proteínas SNARE/genética , Vesículas Sinápticas/genética
6.
Curr Biol ; 15(24): 2236-42, 2005 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-16271476

RESUMEN

Neurotransmitter secretion at synapses is controlled by several processes-morphological docking of vesicles at release sites, priming of docked vesicles to make them fusion competent, and calcium-dependent fusion of vesicles with the plasma membrane . In worms, flies, and mice, mutants lacking UNC-13 have defects in vesicle priming . Current models propose that UNC-13 primes vesicles by stabilizing Syntaxin's "open" conformation by directly interacting with its amino-terminal regulatory domain . However, the functional significance of the UNC-13/Syntaxin interaction has not been tested directly. A truncated protein containing the Munc homology domains (MHD1 and MHD2) and the carboxy-terminal C2 domain partially rescued both the behavioral and secretion defects of unc-13 mutants in C. elegans. A double mutation in MHD2 (F1000A/K1002A) disrupts the UNC-13/Syntaxin interaction. The rate of endogenous synaptic events and the amplitude of nerve-evoked excitatory post-synaptic currents (EPSCs) were both significantly reduced in UNC-13S(F1000A/K1002A). However, the pool of primed (i.e., fusion-competent) vesicles was normal. These results suggest that the UNC-13/Syntaxin interaction is conserved in C. elegans and that, contrary to current models, the UNC-13/Syntaxin interaction is required for nerve-evoked vesicle fusion rather than synaptic-vesicle priming. Thus, UNC-13 may regulate multiple steps of the synaptic-vesicle cycle.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Proteínas Qa-SNARE/metabolismo , Transmisión Sináptica/fisiología , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras , Electrofisiología , Datos de Secuencia Molecular , Mutación/genética , Proteínas Qa-SNARE/genética , Alineación de Secuencia , Sacarosa , Transmisión Sináptica/genética , Vesículas Sinápticas/metabolismo , Técnicas del Sistema de Dos Híbridos
7.
Biol Psychiatry ; 73(7): 683-90, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23237312

RESUMEN

BACKGROUND: Ankyrin 3 (ANK3) has been strongly implicated as a risk gene for bipolar disorder (BD) by recent genome-wide association studies of patient populations. However, the genetic variants of ANK3 contributing to BD risk and their pathological function are unknown. METHODS: To gain insight into the potential disease relevance of ANK3, we examined the function of mouse Ank3 in the regulation of psychiatric-related behaviors using genetic, neurobiological, pharmacological, and gene-environment interaction (G×E) approaches. Ank3 expression was reduced in mouse brain either by viral-mediated RNA interference or through disruption of brain-specific Ank3 in a heterozygous knockout mouse. RESULTS: RNA interference of Ank3 in hippocampus dentate gyrus induced a highly specific and consistent phenotype marked by decreased anxiety-related behaviors and increased activity during the light phase, which were attenuated by chronic treatment with the mood stabilizer lithium. Similar behavioral alterations of reduced anxiety and increased motivation for reward were also exhibited by Ank3+/- heterozygous mice compared with wild-type Ank3+/+ mice. Remarkably, the behavioral traits of Ank3+/- mice transitioned to depression-related features after chronic stress, a trigger of mood episodes in BD. Ank3+/- mice also exhibited elevated serum corticosterone, suggesting that reduced Ank3 expression is associated with elevated stress reactivity. CONCLUSIONS: This study defines a new role for Ank3 in the regulation of psychiatric-related behaviors and stress reactivity that lends support for its involvement in BD and establishes a general framework for determining the disease relevance of genes implicated by patient genome-wide association studies.


Asunto(s)
Ancirinas/genética , Trastornos de Ansiedad/genética , Trastornos de Ansiedad/fisiopatología , Trastorno Bipolar/genética , Cloruro de Litio/farmacología , Estrés Psicológico/genética , Estrés Psicológico/fisiopatología , Animales , Ancirinas/fisiología , Trastornos de Ansiedad/sangre , Trastornos de Ansiedad/tratamiento farmacológico , Corticosterona/sangre , Giro Dentado/fisiología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Estrés Psicológico/sangre , Estrés Psicológico/tratamiento farmacológico
8.
Biol Mood Anxiety Disord ; 2: 18, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23025490

RESUMEN

Bipolar disorder (BD) is a multi-factorial disorder caused by genetic and environmental influences. It has a large genetic component, with heritability estimated between 59-93%. Recent genome-wide association studies (GWAS) using large BD patient populations have identified a number of genes with strong statistical evidence for association with susceptibility for BD. Among the most significant and replicated genes is ankyrin 3 (ANK3), a large gene that encodes multiple isoforms of the ankyrin G protein. This article reviews the current evidence for genetic association of ANK3 with BD, followed by a comprehensive overview of the known biology of the ankyrin G protein, focusing on its neural functions and their potential relevance to BD. Ankyrin G is a scaffold protein that is known to have many essential functions in the brain, although the mechanism by which it contributes to BD is unknown. These functions include organizational roles for subcellular domains in neurons including the axon initial segment and nodes of Ranvier, through which ankyrin G orchestrates the localization of key ion channels and GABAergic presynaptic terminals, as well as creating a diffusion barrier that limits transport into the axon and helps define axo-dendritic polarity. Ankyrin G is postulated to have similar structural and organizational roles at synaptic terminals. Finally, ankyrin G is implicated in both neurogenesis and neuroprotection. ANK3 and other BD risk genes participate in some of the same biological pathways and neural processes that highlight several mechanisms by which they may contribute to BD pathophysiology. Biological investigation in cellular and animal model systems will be critical for elucidating the mechanism through which ANK3 confers risk of BD. This knowledge is expected to lead to a better understanding of the brain abnormalities contributing to BD symptoms, and to potentially identify new targets for treatment and intervention approaches.

9.
PLoS One ; 6(10): e26203, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22022567

RESUMEN

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. In addition to cognitive deficits, FXS patients exhibit hyperactivity, attention deficits, social difficulties, anxiety, and other autistic-like behaviors. FXS is caused by an expanded CGG trinucleotide repeat in the 5' untranslated region of the Fragile X Mental Retardation (FMR1) gene leading to epigenetic silencing and loss of expression of the Fragile X Mental Retardation protein (FMRP). Despite the known relationship between FMR1 CGG repeat expansion and FMR1 silencing, the epigenetic modifications observed at the FMR1 locus, and the consequences of the loss of FMRP on human neurodevelopment and neuronal function remain poorly understood. To address these limitations, we report on the generation of induced pluripotent stem cell (iPSC) lines from multiple patients with FXS and the characterization of their differentiation into post-mitotic neurons and glia. We show that clones from reprogrammed FXS patient fibroblast lines exhibit variation with respect to the predominant CGG-repeat length in the FMR1 gene. In two cases, iPSC clones contained predominant CGG-repeat lengths shorter than measured in corresponding input population of fibroblasts. In another instance, reprogramming a mosaic patient having both normal and pre-mutation length CGG repeats resulted in genetically matched iPSC clonal lines differing in FMR1 promoter CpG methylation and FMRP expression. Using this panel of patient-specific, FXS iPSC models, we demonstrate aberrant neuronal differentiation from FXS iPSCs that is directly correlated with epigenetic modification of the FMR1 gene and a loss of FMRP expression. Overall, these findings provide evidence for a key role for FMRP early in human neurodevelopment prior to synaptogenesis and have implications for modeling of FXS using iPSC technology. By revealing disease-associated cellular phenotypes in human neurons, these iPSC models will aid in the discovery of novel therapeutics for FXS and other autism-spectrum disorders sharing common pathophysiology.


Asunto(s)
Epigénesis Genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Modelos Biológicos , Sistema Nervioso/crecimiento & desarrollo , Adulto , Estudios de Casos y Controles , Diferenciación Celular/genética , Células Cultivadas , Reprogramación Celular/genética , Preescolar , Islas de CpG/genética , Metilación de ADN/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Mosaicismo , Mutación/genética , Sistema Nervioso/metabolismo , Sistema Nervioso/patología , Neuronas/metabolismo , Neuronas/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Donantes de Tejidos , Expansión de Repetición de Trinucleótido/genética
10.
Chem Biol ; 18(7): 891-906, 2011 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-21802010

RESUMEN

Target identification remains challenging for the field of chemical biology. We describe an integrative chemical genomic and proteomic approach combining the use of differentially active analogs of small molecule probes with stable isotope labeling by amino acids in cell culture-mediated affinity enrichment, followed by subsequent testing of candidate targets using RNA interference-mediated gene silencing. We applied this approach to characterizing the natural product K252a and its ability to potentiate neuregulin-1 (Nrg1)/ErbB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4)-dependent neurotrophic factor signaling and neuritogenesis. We show that AAK1 (adaptor-associated kinase 1) is a relevant target of K252a, and that the loss of AAK1 alters ErbB4 trafficking and expression levels, providing evidence for a previously unrecognized role for AAK1 in Nrg1-mediated neurotrophic factor signaling. Similar strategies should lead to the discovery of novel targets for therapeutic development.


Asunto(s)
Receptores ErbB/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neurregulina-1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Carbazoles/metabolismo , Receptores ErbB/genética , Técnicas de Silenciamiento del Gen , Genómica/métodos , Humanos , Alcaloides Indólicos/metabolismo , Modelos Moleculares , Factores de Crecimiento Nervioso/genética , Neurregulina-1/genética , Neuritas/metabolismo , Células PC12 , Proteínas Serina-Treonina Quinasas/genética , Proteómica/métodos , Ratas , Receptor ErbB-4 , Transducción de Señal
11.
ACS Chem Neurosci ; 1(4): 325-342, 2010 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-20495671

RESUMEN

Genetic findings have suggested that neuregulin-1 (Nrg1) and its receptor v-erb-a erythroblastic leukemia viral oncogene homolog 4 (ErbB4) may play a role in neuropsychiatric diseases. However, the downstream signaling events and relevant phenotypic consequences of altered Nrg1 signaling in the nervous system remain poorly understood. To identify small molecules for probing Nrg1-ErbB4 signaling, a PC12-cell model was developed and used to perform a live-cell, image-based screen of the effects of small molecules on Nrg1-induced neuritogenesis. By comparing the resulting phenotypic data to that of a similar screening performed with nerve growth factor (NGF), this multidimensional screen identified compounds that directly inhibit Nrg1-ErbB4 signaling, such as the 4-anilino-quinazoline Iressa (gefitinib), as well as compounds that potentiate Nrg1-ErbB4 signaling, such as the indolocarbazole K-252a. These findings provide new insights into the regulation of Nrg1-ErbB4 signaling events and demonstrate the feasibility of using such a multidimensional, chemical-genetic approach for discovering probes of pathways implicated in neuropsychiatric diseases.

12.
Neuron ; 58(3): 346-61, 2008 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-18466746

RESUMEN

GABA synapses play a critical role in many aspects of circuit development and function. For example, conditions that perturb GABA transmission have been implicated in epilepsy. To identify genes that regulate GABA transmission, we performed an RNAi screen for genes whose inactivation increases the activity of C. elegans body muscles, which receive direct input from GABAergic motor neurons. We identified 90 genes, 21 of which were previously implicated in seizure syndromes, suggesting that this screen has effectively identified candidate genes for epilepsy. Electrophysiological recordings and imaging of excitatory and inhibitory synapses indicate that several genes alter muscle activity by selectively regulating GABA transmission. In particular, we identify two humoral pathways and several protein kinases that modulate GABA transmission but have little effect on excitatory transmission at cholinergic neuromuscular junctions. Our data suggest these conserved genes are components of signaling pathways that regulate GABA transmission and consequently may play a role in epilepsy and other cognitive or psychiatric disorders.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Pruebas Genéticas/métodos , Interferencia de ARN , Sinapsis/fisiología , Ácido gamma-Aminobutírico/fisiología , Acetilcolina/fisiología , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Endocrino/fisiología , Epilepsia/genética , Epilepsia/fisiopatología , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/genética , Potenciales Postsinápticos Inhibidores/fisiología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas Motoras/fisiología , Movimiento/fisiología , Músculos/fisiología , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Transmisión Sináptica/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA