Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 388(23): 2121-2131, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37285526

RESUMEN

BACKGROUND: Data showing the efficacy and safety of the transplantation of hearts obtained from donors after circulatory death as compared with hearts obtained from donors after brain death are limited. METHODS: We conducted a randomized, noninferiority trial in which adult candidates for heart transplantation were assigned in a 3:1 ratio to receive a heart after the circulatory death of the donor or a heart from a donor after brain death if that heart was available first (circulatory-death group) or to receive only a heart that had been preserved with the use of traditional cold storage after the brain death of the donor (brain-death group). The primary end point was the risk-adjusted survival at 6 months in the as-treated circulatory-death group as compared with the brain-death group. The primary safety end point was serious adverse events associated with the heart graft at 30 days after transplantation. RESULTS: A total of 180 patients underwent transplantation; 90 (assigned to the circulatory-death group) received a heart donated after circulatory death and 90 (regardless of group assignment) received a heart donated after brain death. A total of 166 transplant recipients were included in the as-treated primary analysis (80 who received a heart from a circulatory-death donor and 86 who received a heart from a brain-death donor). The risk-adjusted 6-month survival in the as-treated population was 94% (95% confidence interval [CI], 88 to 99) among recipients of a heart from a circulatory-death donor, as compared with 90% (95% CI, 84 to 97) among recipients of a heart from a brain-death donor (least-squares mean difference, -3 percentage points; 90% CI, -10 to 3; P<0.001 for noninferiority [margin, 20 percentage points]). There were no substantial between-group differences in the mean per-patient number of serious adverse events associated with the heart graft at 30 days after transplantation. CONCLUSIONS: In this trial, risk-adjusted survival at 6 months after transplantation with a donor heart that had been reanimated and assessed with the use of extracorporeal nonischemic perfusion after circulatory death was not inferior to that after standard-care transplantation with a donor heart that had been preserved with the use of cold storage after brain death. (Funded by TransMedics; ClinicalTrials.gov number, NCT03831048.).


Asunto(s)
Muerte Encefálica , Trasplante de Corazón , Obtención de Tejidos y Órganos , Adulto , Humanos , Supervivencia de Injerto , Preservación de Órganos , Donantes de Tejidos , Muerte , Seguridad del Paciente
2.
Am J Transplant ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147201

RESUMEN

The innate immune system plays an essential role in regulating the immune responses to kidney transplantation, but the mechanisms through which innate immune cells influence long-term graft survival are unclear. The current study highlights the vital role of trained immunity in kidney allograft survival. Trained immunity describes the epigenetic and metabolic changes that innate immune cells undergo following an initial stimulus, allowing them have a stronger inflammatory response to subsequent stimuli. We stimulated healthy peripheral blood mononuclear cells with pretransplant and posttransplant serum of kidney transplant patients and immunosuppressive drugs in an in vitro trained immunity assay and measured tumor necrosis factor and interleukin 6 cytokine levels in the supernatant as a readout for trained immunity. We show that the serum of kidney transplant recipients collected 1 week after transplantation can suppress trained immunity. Importantly, we found that kidney transplant recipients whose serum most strongly suppressed trained immunity rarely experienced graft loss. This suppressive effect of posttransplant serum is likely mediated by previously unreported effects of immunosuppressive drugs. Our findings provide mechanistic insights into the role of innate immunity in kidney allograft survival, uncovering trained immunity as a potential therapeutic target for improving graft survival.

3.
Ann Surg ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263749

RESUMEN

In vitro studies indicate that kidney transplantation from gene-edited pigs in which expression of all three of the known glycan xenoantigens has been deleted may be more challenging in nonhuman primates (NHPs) than it will be in human recipients. Furthermore, pig-to-human xenotransplantation offers several other advantages - (i) the patient can communicate with the surgical team; (ii) recipient microbiological monitoring and environment will be clinical-grade; and (iii) sophisticated graft monitoring and imaging techniques, (v) therapeutic interventions, e.g., dialysis, plasmapheresis, and (v) intensive care can be deployed that are not easily available in NHP laboratory models. We suggest, therefore, that progress to develop safe, informative human clinical trials will be accelerated if pilot clinical cases are initiated. The selection of patients for kidney xenotransplantation can include those who are at high risk of dying imminently, e.g., those experiencing increasing vascular access challenges with no realistic alternative therapy available, and those who have been accepted onto the waitlist for an allograft, but who are unlikely ever to receive one. Patients with an increased risk of dying include those with (i) age >60 years, (ii) blood groups O or B, and (iii) diabetic nephropathy. UNOS data indicate that an average of 25 patients on the kidney waitlist in the USA die or are removed from the list every day (i.e., >9,000 each year). Given the improved xenograft survival observed in preclinical studies, we suggest that it is time to plan a small pilot clinical trial for healthy dialysis patients who understand the risks and potential benefits of kidney xenotransplantation.

4.
Am J Transplant ; 23(9): 1319-1330, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295719

RESUMEN

Mouse kidney allografts are spontaneously accepted in select, fully mismatched donor-recipient strain combinations, like DBA/2J to C57BL/6 (B6), by natural tolerance. We previously showed accepted renal grafts form aggregates containing various immune cells within 2 weeks posttransplant, referred to as regulatory T cell-rich organized lymphoid structures, which are a novel regulatory tertiary lymphoid organ. To characterize the cells within T cell-rich organized lymphoid structures, we performed single-cell RNA sequencing on CD45+ sorted cells from accepted and rejected renal grafts from 1-week to 6-months posttransplant. Analysis of single-cell RNA sequencing data revealed a shifting from a T cell-dominant to a B cell-rich population by 6 months with an increased regulatory B cell signature. Furthermore, B cells were a greater proportion of the early infiltrating cells in accepted vs rejecting grafts. Flow cytometry of B cells at 20 weeks posttransplant revealed T cell, immunoglobulin domain and mucin domain-1+ B cells, potentially implicating a regulatory role in the maintenance of allograft tolerance. Lastly, B cell trajectory analysis revealed intragraft differentiation from precursor B cells to memory B cells in accepted allografts. In summary, we show a shifting T cell- to B cell-rich environment and a differential cellular pattern among accepted vs rejecting kidney allografts, possibly implicating B cells in the maintenance of kidney allograft acceptance.


Asunto(s)
Linfocitos B Reguladores , Ratones , Animales , Transcriptoma , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Riñón , Aloinjertos , Diferenciación Celular , Rechazo de Injerto/etiología , Supervivencia de Injerto
5.
Am J Transplant ; 22 Suppl 4: 12-17, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36453706

RESUMEN

Outcomes following heart transplantation remain suboptimal with acute and chronic rejection being major contributors to poor long-term survival. IL-6 is increasingly recognized as a critical pro-inflammatory cytokine involved in allograft injury and has been shown to play a key role in regulating the inflammatory and alloimmune responses following heart transplantation. Therapies that inhibit IL-6 signaling have emerged as promising strategies to prevent allograft rejection. Here, we review experimental and pre-clinical evidence that supports the potential use of IL-6 signaling blockade to improve outcomes in heart transplant recipients.


Asunto(s)
Trasplante de Corazón , Interleucina-6 , Corazón , Trasplante de Corazón/efectos adversos , Citocinas , Aloinjertos
6.
Am J Transplant ; 22(3): 705-716, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34726836

RESUMEN

Intragraft events thought to be relevant to the development of tolerance are here subjected to a comprehensive mechanistic study during long-term spontaneous tolerance that occurs in C57BL/6 mice that receive life sustaining DBA/2 kidneys. These allografts rapidly develop periarterial Treg-rich organized lymphoid structures (TOLS) that form in response to class II but not to class I MHC disparity and form independently of lymphotoxin α and lymphotoxin ß receptor pathways. TOLS form in situ in the absence of lymph nodes, spleen, and thymus. Distinctive transcript patterns are maintained over time in TOLS including transcripts associated with Treg differentiation, T cell checkpoint signaling, and Th2 differentiation. Pathway transcripts related to inflammation are expressed in early stages of accepted grafts but diminish with time, while B cell transcripts increase. Intragraft transcript patterns at one week posttransplant distinguish those from kidneys destined to be rejected, that is, C57BL/6 allografts into DBA/2 recipients, from those that will be accepted. In contrast to inflammatory tertiary lymphoid organs (iTLOs) that form in response to chronic viral infection and transgenic Lta expression, TOLS lack high endothelial venules and germinal centers. TOLS represent a novel, pathogenetically important type of TLO that are in situ markers of regulatory tolerance.


Asunto(s)
Trasplante de Riñón , Tolerancia al Trasplante , Animales , Rechazo de Injerto/etiología , Rechazo de Injerto/patología , Supervivencia de Injerto , Riñón , Trasplante de Riñón/efectos adversos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
7.
Circulation ; 142(14): 1389-1398, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33017208

RESUMEN

Consistent survival of life-supporting pig heart xenograft recipients beyond 90 days was recently reported using genetically modified pigs and a clinically applicable drug treatment regimen. If this remarkable achievement proves reproducible, published benchmarks for clinical translation of cardiac xenografts appear to be within reach. Key mechanistic insights are summarized here that informed recent pig design and therapeutic choices, which together appear likely to enable early clinical translation.


Asunto(s)
Supervivencia de Injerto , Trasplante de Corazón , Corazón , Animales , Xenoinjertos , Humanos , Porcinos
8.
Am J Transplant ; 21(1): 21-31, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32529725

RESUMEN

The International Workshop on Clinical Transplant Tolerance is a biennial meeting that aims to provide an update on the progress of studies of immunosuppression minimization or withdrawal in solid organ transplantation. The Fourth International Workshop on Clinical Tolerance was held in Pittsburgh, Pennsylvania, September 5-6, 2019. This report is a summary of presentations on the status of clinical trials designed to minimize or withdraw immunosuppressive drugs in kidney, liver, and lung transplantation without subsequent evidence of rejection. All protocols had in common the use of donor or recipient cell therapy combined with organ transplantation. The workshop also included presentations of mechanistic studies designed to improve understanding of the cellular and molecular basis of tolerance and to identify potential predictors/biomarkers of tolerance. Strategies to enhance the safety of hematopoietic cell transplantation and to improve patient selection/risk stratification for clinical trials were also discussed.


Asunto(s)
Trasplante de Órganos , Tolerancia al Trasplante , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control , Humanos , Tolerancia Inmunológica , Terapia de Inmunosupresión , Inmunosupresores , Pennsylvania
9.
Am J Transplant ; 21(4): 1465-1476, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33021057

RESUMEN

T cells are implicated in the pathogenesis of cardiac allograft vasculopathy (CAV), yet their clonality, specificity, and function are incompletely defined. Here we used T cell receptor ß chain (TCRB) sequencing to study the T cell repertoire in the coronary artery, endomyocardium, and peripheral blood at the time of retransplant in four cases of CAV and compared it to the immunoglobulin heavy chain variable region (IGHV) repertoire from the same samples. High-dimensional flow cytometry coupled with single-cell PCR was also used to define the T cell phenotype. Extensive overlap was observed between intragraft and blood TCRBs in all cases, a finding supported by robust quantitative diversity metrics. In contrast, blood and graft IGHV repertoires from the same samples showed minimal overlap. Coronary infiltrates included CD4+ and CD8+ memory T cells expressing inflammatory (IFNγ, TNFα) and profibrotic (TGFß) cytokines. These were distinguishable from the peripheral blood based on memory, activation, and tissue residency markers (CD45RO, CTLA-4, and CD69). Importantly, high-frequency rearrangements were traced back to endomyocardial biopsies (2-6 years prior). Comparison with four HLA-mismatched blood donors revealed a repertoire of shared TCRBs, including a subset of recently described cross-reactive sequences. These findings provide supportive evidence for an active local intragraft bystander T cell response in late-stage CAV.


Asunto(s)
Trasplante de Corazón , Aloinjertos , Vasos Coronarios , Rechazo de Injerto/etiología , Trasplante de Corazón/efectos adversos , Humanos , Linfocitos T
10.
Am J Transplant ; 20(1): 10-18, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31561273

RESUMEN

Consistent induction of donor-specific unresponsiveness in the absence of continuous immunosuppressive therapy and toxic effects remains a difficult task in clinical organ transplantation. Transplant immunologists have developed numerous experimental treatments that target antigen-presentation (signal 1), costimulation (signal 2), and cytokine production (signal 3) to establish transplantation tolerance. While promising results have been obtained using therapeutic approaches that predominantly target the adaptive immune response, the long-term graft survival rates remain suboptimal. This suggests the existence of unrecognized allograft rejection mechanisms that contribute to organ failure. We postulate that trained immunity stimulatory pathways are critical to the immune response that mediates graft loss. Trained immunity is a recently discovered functional program of the innate immune system, which is characterized by nonpermanent epigenetic and metabolic reprogramming of macrophages. Since trained macrophages upregulate costimulatory molecules (signal 2) and produce pro-inflammatory cytokines (signal 3), they contribute to potent graft reactive immune responses and organ transplant rejection. In this review, we summarize the detrimental effects of trained immunity in the context of organ transplantation and describe pathways that induce macrophage training associated with graft rejection.


Asunto(s)
Rechazo de Injerto/prevención & control , Tolerancia Inmunológica/inmunología , Inmunidad Innata/inmunología , Macrófagos/inmunología , Trasplante de Órganos/métodos , Inmunología del Trasplante/inmunología , Tolerancia al Trasplante/inmunología , Animales , Rechazo de Injerto/inmunología , Rechazo de Injerto/patología , Humanos
11.
Am J Transplant ; 20(10): 2669-2674, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32301262

RESUMEN

Cardiac xenotransplantation has recently taken an important step towards clinical reality. In anticipation of the "first-in-human" heart xenotransplantation trial, we propose a set of patient characteristics that define potential candidates. Our premise is that, to be ethically justified, the risks posed by current state-of-the-art options must outweigh the anticipated risks of a pioneering xenotransplant procedure. Suitable candidates include patients who are at high immunologic risk because of sensitization to alloantigens, including those who have exhibited early onset or accelerated cardiac allograft vasculopathy. In addition, patients should be considered (1) for whom mechanical circulatory support would be prohibitively risky due to a hypercoagulable state, a contraindication to anticoagulation, or restrictive physiology; (2) with severe biventricular dysfunction predicting unsuccessful univentricular left heart support; and (3) adults with complex congenital heart disease. In conclusion, because the published preclinical benchmark for clinical translation of heart xenotransplantation appears within reach, carefully and deliberately defining appropriate trial participants is timely as the basis for ethical clinical trial design.


Asunto(s)
Cardiopatías , Trasplante de Corazón , Adulto , Animales , Contraindicaciones , Humanos , Complicaciones Posoperatorias , Porcinos , Trasplante Heterólogo
12.
Am J Transplant ; 20(5): 1431-1438, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31811777

RESUMEN

Cardiac allograft vasculopathy (CAV) is associated with intragraft B cell infiltrates. Here, we studied the clonal composition of B cell infiltrates using 4 graft specimens with CAV. Using deep sequencing, we analyzed the immunoglobulin heavy chain variable region repertoire in both graft and blood. Results showed robust B cell clonal expansion in the graft but not in the blood for all cases. Several expanded B cell clones, characterized by their uniquely rearranged complementarity-determining region 3, were detected in different locations in the graft. Sequences from intragraft B cells also showed elevated levels of mutated rearrangements in the graft compared to blood B cells. The number of somatic mutations per rearrangement was also higher in the graft than in the blood, suggesting that B cells continued maturing in situ. Overall, our studies demonstrated B cell clonal expansion in human cardiac allografts with CAV. This local B cell response may contribute to the pathophysiology of CAV through a mechanism that needs to be identified.


Asunto(s)
Cardiopatías , Trasplante de Corazón , Aloinjertos , Linfocitos B , Rechazo de Injerto/etiología , Trasplante de Corazón/efectos adversos , Humanos
13.
Cell Immunol ; 349: 104063, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32087929

RESUMEN

Extracellular vesicles (EVs), including exosomes, ectosomes and apoptotic vesicles, play an essential role in communication between cells of the innate and adaptive immune systems. Recent studies showed that EVs released after transplantation of allogeneic tissues and organs are involved in the immune recognition and response leading to rejection or tolerance in mice. After skin, pancreatic islet, and solid organ transplantation, donor-derived EVs were shown to initiate direct inflammatory alloresponses by T cells leading to acute rejection. This occurred through presentation of intact allogeneic MHC molecules on recipient antigen presenting cells (MHC cross-dressing) and subsequent activation of T cells via semi-direct allorecognition. On the other hand, some studies have documented the role of EVs in maternal tolerance of fetal alloantigens during pregnancy and immune privilege associated with spontaneous tolerance of liver allografts in laboratory rodents. The precise nature of the EVs, which are involved in rejection or tolerance, and the cells which produce them, is still unclear. Nevertheless, several reports showed that EVs released in the blood and urine by allografts can be used as biomarkers of rejection. This article reviews current knowledge on the contribution of EVs in allorecognition by T cells and discusses some mechanisms underlying their influence on T cell alloimmunity in allograft rejection or tolerance.


Asunto(s)
Aloinjertos/inmunología , Vesículas Extracelulares/inmunología , Rechazo de Injerto/inmunología , Tolerancia al Trasplante/inmunología , Inmunidad Adaptativa , Animales , Presentación de Antígeno , Células Presentadoras de Antígenos/inmunología , Biomarcadores , Quimerismo , Vesículas Extracelulares/metabolismo , Femenino , Xenoinjertos/inmunología , Humanos , Inmunidad Innata , Isoantígenos/inmunología , Masculino , Intercambio Materno-Fetal/inmunología , Ratones , Embarazo
14.
Am J Transplant ; 19(5): 1518-1528, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30549425

RESUMEN

Clinical Trials in Organ Transplantation-18 (CTOT-18) is a follow-up analysis of the 200-subject multicenter heart transplant CTOT-05 cohort. CTOT-18 aimed to identify clinical, epidemiologic, and biologic markers associated with adverse clinical events past 1 year posttransplantation. We examined various candidate biomarkers including serum antibodies, angiogenic proteins, blood gene expression profiles, and T cell alloreactivity. The composite endpoint (CE) included death, retransplantation, coronary stent, myocardial infarction, and cardiac allograft vasculopathy. The mean follow-up was 4.5 ± SD 1.1 years. Subjects with serum anti-cardiac myosin (CM) antibody detected at transplantation and at 12 months had a higher risk of meeting the CE compared to those without anti-CM antibody (hazard ratio [HR] = 2.9, P = .046). Plasma VEGF-A and VEGF-C levels pretransplant were associated with CE (odds ratio [OR] = 13.24, P = .029; and OR = 0.13, P = .037, respectively). Early intravascular ultrasound findings or other candidate biomarkers were not associated with the study outcomes. In conclusion, anti-CM antibody and plasma levels of VEGF-A and VEGF-C were associated with an increased risk of adverse events. Although this multicenter report supports further evaluation of the mechanisms through which anti-CM antibody and plasma angiogenesis proteins lead to allograft injury, we could not identify additional markers of adverse events or potential novel therapeutic targets.


Asunto(s)
Biomarcadores/metabolismo , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/cirugía , Trasplante de Corazón , Adulto , Ensayo de Inmunoadsorción Enzimática , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Antígenos HLA/inmunología , Humanos , Sistema Inmunológico , Masculino , Persona de Mediana Edad , Miosinas/inmunología , Neovascularización Patológica , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Estudios Retrospectivos , Riesgo , Linfocitos T/inmunología , Resultado del Tratamiento , Factor A de Crecimiento Endotelial Vascular/sangre , Factor C de Crecimiento Endotelial Vascular/sangre , Vimentina/inmunología
15.
Curr Opin Organ Transplant ; 24(1): 49-57, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30516578

RESUMEN

PURPOSE OF REVIEW: There is great variability in how different organ allografts respond to the same tolerance induction protocol. Well known examples of this phenomenon include the protolerogenic nature of kidney and liver allografts as opposed to the tolerance-resistance of heart and lung allografts. This suggests there are organ-specific factors which differentially drive the immune response following transplantation. RECENT FINDINGS: The specific cells or cell products that make one organ allograft more likely to be accepted off immunosuppression than another are largely unknown. However, new insights have been made in this area recently. SUMMARY: The current review will focus on the organ-intrinsic factors that contribute to the organ-specific differences observed in tolerance induction with a view to developing therapeutic strategies to better prevent organ rejection and promote tolerance induction of all organs.


Asunto(s)
Aloinjertos/trasplante , Rechazo de Injerto/inmunología , Trasplante Homólogo/métodos , Humanos
16.
Am J Transplant ; 18(8): 1843-1856, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29939471

RESUMEN

Achieving host immune tolerance of allogeneic transplants represents the ultimate challenge in clinical transplantation. It has become clear that different cells and mechanisms participate in acquisition versus maintenance of allograft tolerance. Indeed, manipulations which prevent tolerance induction often fail to abrogate tolerance once it has been established. Hence, elucidation of the immunological mechanisms underlying maintenance of T cell tolerance to alloantigens is essential for the development of novel interventions that preserve a robust and long lasting state of allograft tolerance that relies on T cell deletion in addition to intra-graft suppression of inflammatory immune responses. In this review, we discuss some essential elements of the mechanisms involved in the maintenance of naturally occurring or experimentally induced allograft tolerance, including the newly described role of antigen cross-dressing mediated by extracellular vesicles.


Asunto(s)
Supervivencia de Injerto/inmunología , Isoantígenos/inmunología , Linfocitos T/inmunología , Tolerancia al Trasplante/inmunología , Animales
17.
J Am Soc Nephrol ; 28(8): 2377-2392, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28302753

RESUMEN

Although spontaneous kidney transplant acceptance/tolerance occurs in mice and occasionally in humans, mechanisms remain unclear. Herein we test the hypothesis that EPO, a hormone predominantly produced by the adult kidney, has immunomodulating properties that are required for spontaneous kidney graft acceptance. In vitro, in a manner dependent on the EPO receptor and CD131 on antigen-presenting cells, EPO induced the secretion of active TGFß by antigen-presenting cells, which in turn converted naïve CD4+ T cells into functional Foxp3+ regulatory T cells (Treg). In murine transplant models, pharmacologic downregulation of kidney-derived EPO prevented spontaneous Treg generation. In a controlled, prospective cohort clinical study, EPO administration at doses used to correct anemia augmented the frequency of peripheral CD4+CD25+CD127lo T cells in humans with CKD. Furthermore, EPO directly inhibited conventional T cell proliferation in vitro via tyrosine phosphatase SHP-1-dependent uncoupling of IL-2Rß signaling. Conversely, EPO-initiated signals facilitated Treg proliferation by augmenting IL-2Rγ signaling and maintaining constitutively quenched IL-2Rß signaling. In additional murine transplant models, recombinant EPO administration prolonged heart allograft survival, whereas pharmacologic downregulation of kidney-derived EPO reduced the expression of TGFß mRNA and abrogated kidney allograft acceptance. Together, our findings delineate the protolerogenic properties of EPO in inhibiting conventional T cells while simultaneously promoting Treg induction, and suggest that manipulating the EPO/EPO receptor signaling axis could be exploited to prevent and/or treat T cell-mediated pathologies, including transplant rejection.


Asunto(s)
Supervivencia de Injerto/inmunología , Trasplante de Riñón , Receptor Cross-Talk , Receptores de Eritropoyetina/fisiología , Linfocitos T Reguladores/inmunología , Animales , Humanos , Ratones , Estudios Prospectivos
19.
Curr Opin Organ Transplant ; 20(4): 392-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26147678

RESUMEN

PURPOSE OF REVIEW: When it comes to tolerance induction, kidney allografts behave differently from heart allografts that behave differently from lung allografts. Here, we examine how and why different organ allografts respond differently to the same tolerance induction protocol. RECENT FINDINGS: Allograft tolerance has been achieved in experimental and clinical kidney transplantation. Inducing tolerance in experimental recipients of heart and lung allografts has, however, proven to be more challenging. New protocols being developed in nonhuman primates based on mixed chimerism and cotransplantation of tolerogenic organs may provide mechanistic insights to help overcome these challenges. SUMMARY: Tolerance induction protocols that are successful in patients transplanted with 'tolerance-prone' organs such as kidneys and livers will most likely not succeed in recipients of 'tolerance-resistant' organs such as hearts and lungs. Separate clinical trials using more robust tolerance protocols will be required to achieve tolerance in heart and lung recipients.


Asunto(s)
Tolerancia Inmunológica , Animales , Quimerismo , Humanos , Trasplante de Riñón , Especificidad de Órganos , Trasplante Homólogo
20.
J Immunol ; 188(12): 6063-70, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22586034

RESUMEN

Denileukin diftitox (DD), a fusion protein comprising IL-2 and diphtheria toxin, was initially expected to enhance antitumor immunity by selectively eliminating regulatory T cells (Tregs) displaying the high-affinity IL-2R (α-ß-γ trimers). Although DD was shown to deplete some Tregs in primates, its effects on NK cells (CD16(+)CD8(+)NKG2A(+)CD3(-)), which constitutively express the intermediate-affinity IL-2R (ß-γ dimers) and play a critical role in antitumor immunity, are still unknown. To address this question, cynomolgus monkeys were injected i.v. with two doses of DD (8 or 18 µg/kg). This treatment resulted in a rapid, but short-term, reduction in detectable peripheral blood resting Tregs (CD4(+)CD45RA(+)Foxp3(+)) and a transient increase in the number of activated Tregs (CD4(+)CD45RA(-)Foxp3(high)), followed by their partial depletion (50-60%). In contrast, all NK cells were deleted immediately and durably after DD administration. This difference was not due to a higher binding or internalization of DD by NK cells compared with Tregs. Coadministration of DD with IL-15, which binds to IL-2Rß-γ, abrogated DD-induced NK cell deletion in vitro and in vivo, whereas it did not affect Treg elimination. Taken together, these results show that DD exerts a potent cytotoxic effect on NK cells, a phenomenon that might impair its antitumoral properties. However, coadministration of IL-15 with DD could alleviate this problem by selectively protecting potentially oncolytic NK cells, while allowing the depletion of immunosuppressive Tregs in cancer patients.


Asunto(s)
Antineoplásicos/farmacología , Toxina Diftérica/farmacología , Inmunotoxinas/farmacología , Interleucina-2/farmacología , Células Asesinas Naturales/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Animales , Citometría de Flujo , Interleucina-15/farmacología , Células Asesinas Naturales/inmunología , Macaca fascicularis , Masculino , Proteínas Recombinantes de Fusión/farmacología , Linfocitos T Reguladores/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA