Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Epilepsia ; 65(4): 944-960, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38318986

RESUMEN

OBJECTIVE: To deconstruct the epileptogenic networks of patients with drug-resistant epilepsy (DRE) using source functional connectivity (FC) analysis; unveil the FC biomarkers of the epileptogenic zone (EZ); and develop machine learning (ML) models to estimate the EZ using brief interictal electroencephalography (EEG) data. METHODS: We analyzed scalp EEG from 50 patients with DRE who had surgery. We reconstructed the activity (electrical source imaging [ESI]) of virtual sensors (VSs) across the whole cortex and computed FC separately for epileptiform and non-epileptiform EEG epochs (with or without spikes). In patients with good outcome (Engel 1a), four cortical regions were defined: EZ (resection) and three non-epileptogenic zones (NEZs) in the same and opposite hemispheres. Region-specific FC features in six frequency bands and three spatial ranges (long, short, inner) were compared between regions (Wilcoxon sign-rank). We developed ML classifiers to identify the VSs in the EZ using VS-specific FC features. Cross-validation was performed using good outcome data. Performance was compared with poor outcomes and interictal spike localization. RESULTS: FC differed between EZ and NEZs (p < .05) during non-epileptiform and epileptiform epochs, showing higher FC in the EZ than its homotopic contralateral NEZ. During epileptiform epochs, the NEZ in the epileptogenic hemisphere showed higher FC than its contralateral NEZ. In good outcome patients, the ML classifiers reached 75% accuracy to the resection (91% sensitivity; 74% specificity; distance from EZ: 38 mm) using epileptiform epochs (gamma and beta frequency bands) and 62% accuracy using broadband non-epileptiform epochs, both outperforming spike localization (accuracy = 47%; p < .05; distance from EZ: 57 mm). Lower performance was seen in poor outcomes. SIGNIFICANCE: We present an FC approach to extract EZ biomarkers from brief EEG data. Increased FC in various frequencies characterized the EZ during epileptiform and non-epileptiform epochs. FC-based ML models identified the resection better in good than poor outcome patients, demonstrating their potential for presurgical use in pediatric DRE.


Asunto(s)
Epilepsia Refractaria , Electroencefalografía , Humanos , Niño , Electroencefalografía/métodos , Epilepsia Refractaria/cirugía , Imagen por Resonancia Magnética , Biomarcadores
2.
Brain ; 146(5): 1916-1931, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36789500

RESUMEN

Epilepsy is increasingly considered a disorder of brain networks. Studying these networks with functional connectivity can help identify hubs that facilitate the spread of epileptiform activity. Surgical resection of these hubs may lead patients who suffer from drug-resistant epilepsy to seizure freedom. Here, we aim to map non-invasively epileptogenic networks, through the virtual implantation of sensors estimated with electric and magnetic source imaging, in patients with drug-resistant epilepsy. We hypothesize that highly connected hubs identified non-invasively with source imaging can predict the epileptogenic zone and the surgical outcome better than spikes localized with conventional source localization methods (dipoles). We retrospectively analysed simultaneous high-density electroencephalography (EEG) and magnetoencephalography data recorded from 37 children and young adults with drug-resistant epilepsy who underwent neurosurgery. Using source imaging, we estimated virtual sensors at locations where intracranial EEG contacts were placed. On data with and without spikes, we computed undirected functional connectivity between sensors/contacts using amplitude envelope correlation and phase locking value for physiologically relevant frequency bands. From each functional connectivity matrix, we generated an undirected network containing the strongest connections within sensors/contacts using the minimum spanning tree. For each sensor/contact, we computed graph centrality measures. We compared functional connectivity and their derived graph centrality of sensors/contacts inside resection for good (n = 22, ILAE I) and poor (n = 15, ILAE II-VI) outcome patients, tested their ability to predict the epileptogenic zone in good-outcome patients, examined the association between highly connected hubs removal and surgical outcome and performed leave-one-out cross-validation to support their prognostic value. We also compared the predictive values of functional connectivity with those of dipoles. Finally, we tested the reliability of virtual sensor measures via Spearman's correlation with intracranial EEG at population- and patient-level. We observed higher functional connectivity inside than outside resection (P < 0.05, Wilcoxon signed-rank test) for good-outcome patients, on data with and without spikes across different bands for intracranial EEG and electric/magnetic source imaging and few differences for poor-outcome patients. These functional connectivity measures were predictive of both the epileptogenic zone and outcome (positive and negative predictive values ≥55%, validated using leave-one-out cross-validation) outperforming dipoles on spikes. Significant correlations were found between source imaging and intracranial EEG measures (0.4 ≤ rho ≤ 0.9, P < 0.05). Our findings suggest that virtual implantation of sensors through source imaging can non-invasively identify highly connected hubs in patients with drug-resistant epilepsy, even in the absence of frank epileptiform activity. Surgical resection of these hubs predicts outcome better than dipoles.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Niño , Adulto Joven , Humanos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Encéfalo , Electroencefalografía/métodos , Resultado del Tratamiento , Mapeo Encefálico , Imagen por Resonancia Magnética
3.
Brain ; 146(9): 3898-3912, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37018068

RESUMEN

Neurosurgical intervention is the best available treatment for selected patients with drug resistant epilepsy. For these patients, surgical planning requires biomarkers that delineate the epileptogenic zone, the brain area that is indispensable for the generation of seizures. Interictal spikes recorded with electrophysiological techniques are considered key biomarkers of epilepsy. Yet, they lack specificity, mostly because they propagate across brain areas forming networks. Understanding the relationship between interictal spike propagation and functional connections among the involved brain areas may help develop novel biomarkers that can delineate the epileptogenic zone with high precision. Here, we reveal the relationship between spike propagation and effective connectivity among onset and areas of spread and assess the prognostic value of resecting these areas. We analysed intracranial EEG data from 43 children with drug resistant epilepsy who underwent invasive monitoring for neurosurgical planning. Using electric source imaging, we mapped spike propagation in the source domain and identified three zones: onset, early-spread and late-spread. For each zone, we calculated the overlap and distance from surgical resection. We then estimated a virtual sensor for each zone and the direction of information flow among them via Granger causality. Finally, we compared the prognostic value of resecting these zones, the clinically-defined seizure onset zone and the spike onset on intracranial EEG channels by estimating their overlap with resection. We observed a spike propagation in source space for 37 patients with a median duration of 95 ms (interquartile range: 34-206), a spatial displacement of 14 cm (7.5-22 cm) and a velocity of 0.5 m/s (0.3-0.8 m/s). In patients with good surgical outcome (25 patients, Engel I), the onset had higher overlap with resection [96% (40-100%)] than early-spread [86% (34-100%), P = 0.01] and late-spread [59% (12-100%), P = 0.002], and it was also closer to resection than late-spread [5 mm versus 9 mm, P = 0.007]. We found an information flow from onset to early-spread in 66% of patients with good outcomes, and from early-spread to onset in 50% of patients with poor outcome. Finally, resection of spike onset, but not area of spike spread or the seizure onset zone, predicted outcome with positive predictive value of 79% and negative predictive value of 56% (P = 0.04). Spatiotemporal mapping of spike propagation reveals information flow from onset to areas of spread in epilepsy brain. Surgical resection of the spike onset disrupts the epileptogenic network and may render patients with drug resistant epilepsy seizure-free without having to wait for a seizure to occur during intracranial monitoring.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Niño , Humanos , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electroencefalografía/métodos , Epilepsia/cirugía , Convulsiones , Resultado del Tratamiento
4.
Brain Topogr ; 37(1): 88-101, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37737957

RESUMEN

INTRODUCTION: Literature lacks studies investigating the cortical generation of sleep spindles in drug-resistant epilepsy (DRE) and how they evolve after resection of the epileptogenic zone (EZ). Here, we examined sleep EEGs of children with focal DRE who became seizure-free after focal epilepsy surgery, and aimed to investigate the changes in the spindle generation before and after the surgery using low-density scalp EEG and electrical source imaging (ESI). METHODS: We analyzed N2-sleep EEGs from 19 children with DRE before and after surgery. We identified slow (8-12 Hz) and fast spindles (13-16 Hz), computed their spectral features and cortical generators through ESI and computed their distance from the EZ and irritative zone (IZ). We performed two-way ANOVA testing the effect of spindle type (slow vs. fast) and surgical phase (pre-surgery vs. post-surgery) on each feature. RESULTS: Power, frequency and cortical activation of slow spindles increased after surgery (p < 0.005), while this was not seen for fast spindles. Before surgery, the cortical generators of slow spindles were closer to the EZ (57.3 vs. 66.2 mm, p = 0.007) and IZ (41.3 vs. 55.5 mm, p = 0.02) than fast spindle generators. CONCLUSIONS: Our data indicate alterations in the EEG slow spindles after resective epilepsy surgery. Fast spindle generation on the contrary did not change after surgery. Although the study is limited by its retrospective nature, lack of healthy controls, and reduced cortical spatial sampling, our findings suggest a spatial relationship between the slow spindles and the epileptogenic generators.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Niño , Humanos , Estudios Retrospectivos , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Sueño/fisiología , Electroencefalografía/métodos
5.
Ann Neurol ; 89(5): 911-925, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33710676

RESUMEN

OBJECTIVE: Intracranial electroencephalographic (icEEG) studies show that interictal ripples propagate across the brain of children with medically refractory epilepsy (MRE), and the onset of this propagation (ripple onset zone [ROZ]) estimates the epileptogenic zone. It is still unknown whether we can map this propagation noninvasively. The goal of this study is to map ripples (ripple zone [RZ]) and their propagation onset (ROZ) using high-density EEG (HD-EEG) and magnetoencephalography (MEG), and to estimate their prognostic value in pediatric epilepsy surgery. METHODS: We retrospectively analyzed simultaneous HD-EEG and MEG data from 28 children with MRE who underwent icEEG and epilepsy surgery. Using electric and magnetic source imaging, we estimated virtual sensors (VSs) at brain locations that matched the icEEG implantation. We detected ripples on VSs, defined the virtual RZ and virtual ROZ, and estimated their distance from icEEG. We assessed the predictive value of resecting virtual RZ and virtual ROZ for postsurgical outcome. Interictal spike localization on HD-EEG and MEG was also performed and compared with ripples. RESULTS: We mapped ripple propagation in all patients with HD-EEG and in 27 (96%) patients with MEG. The distance from icEEG did not differ between HD-EEG and MEG when mapping the RZ (26-27mm, p = 0.6) or ROZ (22-24mm, p = 0.4). Resecting the virtual ROZ, but not virtual RZ or the sources of spikes, was associated with good outcome for HD-EEG (p = 0.016) and MEG (p = 0.047). INTERPRETATION: HD-EEG and MEG can map interictal ripples and their propagation onset (virtual ROZ). Noninvasively mapping the ripple onset may augment epilepsy surgery planning and improve surgical outcome of children with MRE. ANN NEUROL 2021;89:911-925.


Asunto(s)
Mapeo Encefálico/métodos , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electrocorticografía/métodos , Adolescente , Niño , Preescolar , Femenino , Humanos , Magnetoencefalografía , Masculino , Valor Predictivo de las Pruebas , Pronóstico , Estudios Prospectivos , Resultado del Tratamiento
6.
Cereb Cortex ; 31(8): 3678-3700, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33749727

RESUMEN

Despite ongoing advances in our understanding of local single-cellular and network-level activity of neuronal populations in the human brain, extraordinarily little is known about their "intermediate" microscale local circuit dynamics. Here, we utilized ultra-high-density microelectrode arrays and a rare opportunity to perform intracranial recordings across multiple cortical areas in human participants to discover three distinct classes of cortical activity that are not locked to ongoing natural brain rhythmic activity. The first included fast waveforms similar to extracellular single-unit activity. The other two types were discrete events with slower waveform dynamics and were found preferentially in upper cortical layers. These second and third types were also observed in rodents, nonhuman primates, and semi-chronic recordings from humans via laminar and Utah array microelectrodes. The rates of all three events were selectively modulated by auditory and electrical stimuli, pharmacological manipulation, and cold saline application and had small causal co-occurrences. These results suggest that the proper combination of high-resolution microelectrodes and analytic techniques can capture neuronal dynamics that lay between somatic action potentials and aggregate population activity. Understanding intermediate microscale dynamics in relation to single-cell and network dynamics may reveal important details about activity in the full cortical circuit.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/fisiología , Estimulación Acústica , Adulto , Animales , Estimulación Eléctrica , Electroencefalografía , Fenómenos Electrofisiológicos , Epilepsia/fisiopatología , Espacio Extracelular/fisiología , Femenino , Humanos , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Microelectrodos , Persona de Mediana Edad , Corteza Somatosensorial/fisiología , Análisis de Ondículas , Adulto Joven
7.
Childs Nerv Syst ; 38(7): 1365-1370, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35449311

RESUMEN

BACKGROUND: Focal cortical dysplasia (FCD) is a common etiology of refractory epilepsy, particularly in children. Surgical management is potentially curative, but poses the challenge of distinguishing the border between ictogenic regions of dysplasia and functionally critical brain tissue. Bottom-of-a-sulcus dysplasia (BOSD) amplifies this challenge, due to difficulties in physiologic mapping of the deep tissue. METHODS: We report a one-stage resection of a dysplasia-associated seizure focus abutting and involving the hand and face primary motor cortex. In doing so, we describe our surgical planning integrating neuronavigated transcranial magnetic stimulation (nTMS) for functional motor mapping, combined with intraoperative ultrasonography, intracranial electroencephalography, and magnetic resonance imaging (MRI). A 5-year-old girl with intractable focal epilepsy was referred to our comprehensive epilepsy program. Despite attentive pharmacotherapy, she experienced status epilepticus and up to 70 seizures per day, accompanied by multiple side effects from her antiseizure medication. A right frontal BOSD in close proximity to the hand motor area of the precentral gyrus was identified on MRI. Postoperatively, she is seizure-free for over 1 year with no hand deficit. CONCLUSION: Although technically complex, single-stage resection taking advantage of comprehensive surgical planning with optimized fusion of functional mapping and intraoperative modalities merits consideration given the invasiveness of a two-stage approach for limited added value. Integrated pre-surgical nTMS allowed for mapping of eloquent cortex without invasive electrocortical stimulation.


Asunto(s)
Neoplasias Encefálicas , Epilepsia Refractaria , Corteza Motora , Mapeo Encefálico/métodos , Neoplasias Encefálicas/cirugía , Niño , Preescolar , Epilepsia Refractaria/cirugía , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Corteza Motora/diagnóstico por imagen , Corteza Motora/cirugía , Neuronavegación/métodos , Estimulación Magnética Transcraneal/métodos
8.
Acta Neurochir (Wien) ; 164(8): 2159-2164, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35578117

RESUMEN

BACKGROUND: Posterior quadrant disconnection (PQD) is intended to interrupt the propagation of intractable unilateral temporo-parieto-occipital epilepsy. METHOD: An enhanced operative video presents the illustrative case of a total PQD indicated for a 15-year-old boy with Sturge-Weber syndrome suffering from seizure recurrence after a partial PQD. We describe the surgical procedure with emphasis on relevant anatomy and multimodal intraoperative guidance in three steps: (i) parieto-occipital disconnection, (ii) posterior callosotomy, and (iii) temporal disconnection/resection. Pearls and pitfalls of surgical management are discussed. CONCLUSION: PQD is a less invasive surgical option to typical hemispherotomy and hemispherectomy for selected indications of posterior multilobar epilepsy.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Hemisferectomía , Psicocirugía , Adolescente , Epilepsia Refractaria/cirugía , Epilepsia/cirugía , Hemisferectomía/métodos , Humanos , Masculino , Resultado del Tratamiento
9.
Ann Neurol ; 88(3): 489-502, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32542794

RESUMEN

OBJECTIVE: Cathodal direct current stimulation (cDCS) induces long-term depression (LTD)-like reduction of cortical excitability (DCS-LTD), which has been tested in the treatment of epilepsy with modest effects. In part, this may be due to variable cortical neuron orientation relative to the electric field. We tested, in vivo and in vitro, whether DCS-LTD occurs throughout the cortical thickness, and if not, then whether drug-DCS pairing can enhance the uniformity of the cortical response and the cDCS antiepileptic effect. METHODS: cDCS-mediated changes in cortical excitability were measured in vitro in mouse motor cortex (M1) and in human postoperative neocortex, in vivo in mouse somatosensory cortex (S1), and in a mouse kainic acid (KA)-seizure model. Contributions of N-methyl-D-aspartate-type glutamate receptors (NMDARs) to cDCS-mediated plasticity were tested with application of NMDAR blockers (memantine/D-AP5). RESULTS: cDCS reliably induced DCS-LTD in superficial cortical layers, and a long-term potentiation (LTP)-like enhancement (DCS-LTP) was recorded in deep cortical layers. Immunostaining confirmed layer-specific increase of phospho-S6 ribosomal protein in mouse M1. Similar nonuniform cDCS aftereffects on cortical excitability were also found in human neocortex in vitro and in S1 of alert mice in vivo. Application of memantine/D-AP5 either produced a more uniform DCS-LTD throughout the cortical thickness or at least abolished DCS-LTP. Moreover, a combination of memantine and cDCS suppressed KA-induced seizures. INTERPRETATION: cDCS aftereffects are not uniform throughout cortical layers, which may explain the incomplete cDCS clinical efficacy. NMDAR antagonists may augment cDCS efficacy in epilepsy and other disorders where regional depression of cortical excitability is desirable. ANN NEUROL 2020;88:489-502.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Antagonistas de Aminoácidos Excitadores/farmacología , Depresión Sináptica a Largo Plazo/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Animales , Epilepsia/fisiopatología , Humanos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL
10.
Cereb Cortex ; 29(11): 4551-4567, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30590542

RESUMEN

Rapid and flexible learning during behavioral choices is critical to our daily endeavors and constitutes a hallmark of dynamic reasoning. An important paradigm to examine flexible behavior involves learning new arbitrary associations mapping visual inputs to motor outputs. We conjectured that visuomotor rules are instantiated by translating visual signals into actions through dynamic interactions between visual, frontal and motor cortex. We evaluated the neural representation of such visuomotor rules by performing intracranial field potential recordings in epilepsy subjects during a rule-learning delayed match-to-behavior task. Learning new visuomotor mappings led to the emergence of specific responses associating visual signals with motor outputs in 3 anatomical clusters in frontal, anteroventral temporal and posterior parietal cortex. After learning, mapping selective signals during the delay period showed interactions with visual and motor signals. These observations provide initial steps towards elucidating the dynamic circuits underlying flexible behavior and how communication between subregions of frontal, temporal, and parietal cortex leads to rapid learning of task-relevant choices.


Asunto(s)
Aprendizaje por Asociación/fisiología , Encéfalo/fisiología , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Niño , Femenino , Lóbulo Frontal/fisiología , Humanos , Masculino , Persona de Mediana Edad , Actividad Motora , Vías Nerviosas/fisiología , Lóbulo Parietal/fisiología , Estimulación Luminosa , Lóbulo Temporal/fisiología , Percepción Visual/fisiología , Adulto Joven
11.
J Neurosci ; 38(12): 3013-3025, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29449429

RESUMEN

Sleep spindles are a cardinal feature in human NREM sleep and may be important for memory consolidation. We studied the intracortical organization of spindles in men and women by recording spontaneous sleep spindles from different cortical layers using linear microelectrode arrays. Two patterns of spindle generation were identified using visual inspection, and confirmed with factor analysis. Spindles (10-16 Hz) were largest and most common in upper and middle channels, with limited involvement of deep channels. Many spindles were observed in only upper or only middle channels, but approximately half occurred in both. In spindles involving both middle and upper channels, the spindle envelope onset in middle channels led upper by ∼25-50 ms on average. The phase relationship between spindle waves in upper and middle channels varied dynamically within spindle epochs, and across individuals. Current source density analysis demonstrated that upper and middle channel spindles were both generated by an excitatory supragranular current sink while an additional deep source was present for middle channel spindles only. Only middle channel spindles were accompanied by deep low (25-50 Hz) and high (70-170 Hz) gamma activity. These results suggest that upper channel spindles are generated by supragranular pyramids, and middle channel by infragranular. Possibly, middle channel spindles are generated by core thalamocortical afferents, and upper channel by matrix. The concurrence of these patterns could reflect engagement of cortical circuits in the integration of more focal (core) and distributed (matrix) aspects of memory. These results demonstrate that at least two distinct intracortical systems generate human sleep spindles.SIGNIFICANCE STATEMENT Bursts of ∼14 Hz oscillations, lasting ∼1 s, have been recognized for over 80 years as cardinal features of mammalian sleep. Recent findings suggest that they play a key role in organizing cortical activity during memory consolidation. We used linear microelectrode arrays to study their intracortical organization in humans. We found that spindles could be divided into two types. One mainly engages upper layers of the cortex, which are considered to be specialized for associative activity. The other engages both upper and middle layers, including those devoted to sensory input. The interaction of these two spindle types may help organize the interaction of sensory and associative aspects of memory consolidation.


Asunto(s)
Corteza Cerebral/fisiología , Consolidación de la Memoria/fisiología , Sueño/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven
12.
Ann Neurol ; 84(3): 331-346, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30022519

RESUMEN

OBJECTIVE: In patients with medically refractory epilepsy (MRE), interictal ripples (80-250Hz) are observed in large brain areas whose resection may be unnecessary for seizure freedom. This limits their utility as epilepsy biomarkers for surgery. We assessed the spatiotemporal propagation of interictal ripples on intracranial electroencephalography (iEEG) in children with MRE, compared it with the propagation of spikes, identified ripples that initiated propagation (onset-ripples), and evaluated their clinical value as epilepsy biomarkers. METHODS: Twenty-seven children who underwent epilepsy surgery were studied. We identified propagation sequences of ripples and spikes across multiple iEEG contacts and calculated each ripple or spike latency from the propagation onset. We classified ripples and spikes into categories (ie, onset, spread, and isolated) based on their spatiotemporal characteristics and correlated their mean rate inside and outside resection with outcome (good outcome, Engel 1 versus poor outcome, Engel≥2). We determined, as onset-zone, spread-zone, and isolated-zone, the areas generating the corresponding ripple or spike category and evaluated the predictive value of their resection. RESULTS: We observed ripple propagation in all patients and spike propagation in 25 patients. Mean rate of onset-ripples inside resection predicted the outcome (odds ratio = 5.37; p = 0.02) and correlated with Engel class (rho = -0.55; p = 0.003). Resection of the onset-ripple-zone was associated with good outcome (p = 0.047). No association was found for the spread-ripple-zone, isolated-ripple-zone, or any spike-zone. INTERPRETATION: Interictal ripples propagate across iEEG contacts in children with MRE. The association between the onset-ripple-zone resection and good outcome indicates that onset-ripples are promising epilepsy biomarkers, which estimate the epileptogenic tissue better than spread-ripples or onset-spikes. Ann Neurol 2018;84:331-346.


Asunto(s)
Encéfalo/cirugía , Epilepsia/cirugía , Convulsiones/cirugía , Adolescente , Encéfalo/fisiopatología , Ondas Encefálicas/fisiología , Niño , Electrocorticografía/métodos , Electroencefalografía/métodos , Epilepsia/diagnóstico , Femenino , Humanos , Masculino , Convulsiones/diagnóstico , Resultado del Tratamiento
13.
Ann Neurol ; 83(6): 1133-1146, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29679388

RESUMEN

OBJECTIVE: Somatic variants are a recognized cause of epilepsy-associated focal malformations of cortical development (MCD). We hypothesized that somatic variants may underlie a wider range of focal epilepsy, including nonlesional focal epilepsy (NLFE). Through genetic analysis of brain tissue, we evaluated the role of somatic variation in focal epilepsy with and without MCD. METHODS: We identified somatic variants through high-depth exome and ultra-high-depth candidate gene sequencing of DNA from epilepsy surgery specimens and leukocytes from 18 individuals with NLFE and 38 with focal MCD. RESULTS: We observed somatic variants in 5 cases in SLC35A2, a gene associated with glycosylation defects and rare X-linked epileptic encephalopathies. Nonsynonymous variants in SLC35A2 were detected in resected brain, and absent from leukocytes, in 3 of 18 individuals (17%) with NLFE, 1 female and 2 males, with variant allele frequencies (VAFs) in brain-derived DNA of 2 to 14%. Pathologic evaluation revealed focal cortical dysplasia type Ia (FCD1a) in 2 of the 3 NLFE cases. In the MCD cohort, nonsynonymous variants in SCL35A2 were detected in the brains of 2 males with intractable epilepsy, developmental delay, and magnetic resonance imaging suggesting FCD, with VAFs of 19 to 53%; Evidence for FCD was not observed in either brain tissue specimen. INTERPRETATION: We report somatic variants in SLC35A2 as an explanation for a substantial fraction of NLFE, a largely unexplained condition, as well as focal MCD, previously shown to result from somatic mutation but until now only in PI3K-AKT-mTOR pathway genes. Collectively, our findings suggest a larger role than previously recognized for glycosylation defects in the intractable epilepsies. Ann Neurol 2018.


Asunto(s)
Encéfalo/patología , Epilepsia Refractaria/genética , Proteínas de Transporte de Monosacáridos/genética , Neocórtex/patología , Adolescente , Niño , Exoma/genética , Femenino , Humanos , Masculino , Malformaciones del Desarrollo Cortical/genética , Mutación/genética , Neuronas/patología , Fosfatidilinositol 3-Quinasas/genética , Serina-Treonina Quinasas TOR/genética , Adulto Joven
14.
Neuroimage ; 180(Pt A): 147-159, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28823828

RESUMEN

The majority of visual recognition studies have focused on the neural responses to repeated presentations of static stimuli with abrupt and well-defined onset and offset times. In contrast, natural vision involves unique renderings of visual inputs that are continuously changing without explicitly defined temporal transitions. Here we considered commercial movies as a coarse proxy to natural vision. We recorded intracranial field potential signals from 1,284 electrodes implanted in 15 patients with epilepsy while the subjects passively viewed commercial movies. We could rapidly detect large changes in the visual inputs within approximately 100 ms of their occurrence, using exclusively field potential signals from ventral visual cortical areas including the inferior temporal gyrus and inferior occipital gyrus. Furthermore, we could decode the content of those visual changes even in a single movie presentation, generalizing across the wide range of transformations present in a movie. These results present a methodological framework for studying cognition during dynamic and natural vision.


Asunto(s)
Corteza Visual/fisiología , Percepción Visual/fisiología , Adolescente , Adulto , Mapeo Encefálico/métodos , Niño , Preescolar , Epilepsia Refractaria/terapia , Terapia por Estimulación Eléctrica , Electrodos Implantados , Potenciales Evocados Visuales/fisiología , Femenino , Humanos , Masculino , Películas Cinematográficas , Estimulación Luminosa , Procesamiento de Señales Asistido por Computador , Adulto Joven
16.
Int J Mol Sci ; 19(1)2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29342116

RESUMEN

Vascular endothelial growth factor (VEGF) is a potent growth factor playing diverse roles in vasculogenesis and angiogenesis. In the brain, VEGF mediates angiogenesis, neural migration and neuroprotection. As a permeability factor, excessive VEGF disrupts intracellular barriers, increases leakage of the choroid plexus endothelia, evokes edema, and activates the inflammatory pathway. Recently, we discovered that a heparin binding epidermal growth factor like growth factor (HB-EGF)-a class of EGF receptor (EGFR) family ligands-contributes to the development of hydrocephalus with subarachnoid hemorrhage through activation of VEGF signaling. The objective of this review is to entail a recent update on causes of death due to neurological disorders involving cerebrovascular and age-related neurological conditions and to understand the mechanism by which angiogenesis-dependent pathological events can be treated with VEGF antagonisms. The Global Burden of Disease study indicates that cancer and cardiovascular disease including ischemic and hemorrhagic stroke are two leading causes of death worldwide. The literature suggests that VEGF signaling in ischemic brains highlights the importance of concentration, timing, and alternate route of modulating VEGF signaling pathway. Molecular targets distinguishing two distinct pathways of VEGF signaling may provide novel therapies for the treatment of neurological disorders and for maintaining lower mortality due to these conditions.


Asunto(s)
Enfermedades del Sistema Nervioso/metabolismo , Transducción de Señal , Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Edad , Envejecimiento , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Trastornos Cerebrovasculares/diagnóstico , Trastornos Cerebrovasculares/etiología , Trastornos Cerebrovasculares/metabolismo , Trastornos Cerebrovasculares/terapia , Humanos , Terapia Molecular Dirigida , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/terapia , Transducción de Señal/efectos de los fármacos , Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
17.
Ann Neurol ; 80(2): 233-46, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27315032

RESUMEN

OBJECTIVE: To obtain insights into mechanisms mediating changes in cortical excitability induced by cathodal transcranial direct current stimulation (tDCS). METHODS: Neocortical slices were exposed to direct current stimulation (DCS) delivered through Ag/AgCl electrodes over a range of current orientations, magnitudes, and durations. DCS-induced cortical plasticity and its receptor dependency were measured as the change in layer II/III field excitatory postsynaptic potentials by a multielectrode array, both with and without neurotransmitter receptor blockers or allosteric modulators. In vivo, tDCS was delivered to intact mice scalp via surface electrodes. Molecular consequences of DCS in vitro or tDCS in vivo were tested by immunoblot of protein extracted from stimulated slices or the neocortex harvested from stimulated intact mice. RESULTS: Cathodal DCS in vitro induces a long-term depression (DCS-LTD) of excitatory synaptic strength in both human and mouse neocortical slices. DCS-LTD is abolished with an mGluR5 negative allosteric modulator, mechanistic target of rapamycin (mTOR) inhibitor, and inhibitor of protein synthesis. However, DCS-LTD persists despite either γ-aminobutyric acid type A receptor or N-methyl-D-aspartate receptor inhibition. An mGluR5-positive allosteric modulator, in contrast, transformed transient synaptic depression resultant from brief DCS application into durable DCS-LTD. INTERPRETATION: We identify a novel molecular pathway by which tDCS modulates cortical excitability, and indicate a capacity for synergistic interaction between tDCS and pharmacologic mGluR5 facilitation. The findings support exploration of cathodal tDCS as a treatment of neurologic conditions characterized by aberrant regional cortical excitability referable to mGluR5-mTOR signaling. Ann Neurol 2016;80:233-246.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Neocórtex/microbiología , Neocórtex/fisiología , Plasticidad Neuronal/fisiología , Receptor del Glutamato Metabotropico 5/fisiología , Estimulación Transcraneal de Corriente Directa , 2-Amino-5-fosfonovalerato/farmacología , Animales , Benzamidas/farmacología , Bicuculina/farmacología , Cicloheximida/farmacología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Humanos , Imidazoles/farmacología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Masculino , Ratones , Neocórtex/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Pirazoles/farmacología , Piridinas/farmacología , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/fisiología
18.
AJR Am J Roentgenol ; 208(2): 413-419, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27845838

RESUMEN

OBJECTIVE: Children with surgically treated hydrocephalus commonly undergo multiple neuroimaging studies. The purpose of this article is to share an experience with use of the as low as reasonably achievable (ALARA) principle to guide the imaging approach to these patients. CONCLUSION: A reasonably achievable strategy for minimizing ionizing radiation in patients with surgically treated hydrocephalus includes rapid-sequence MRI and judicious use of dose-optimized head CT. Rapid-sequence MRI is particularly useful in the care of patients who have undergone endoscopic third ventriculostomy.


Asunto(s)
Hidrocefalia/diagnóstico por imagen , Hidrocefalia/cirugía , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Tomografía Computarizada por Rayos X/métodos , Derivaciones del Líquido Cefalorraquídeo , Niño , Preescolar , Femenino , Humanos , Masculino , Resultado del Tratamiento , Ventriculostomía
19.
Neuroimage ; 124(Pt A): 714-723, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26408860

RESUMEN

Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach are demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility.


Asunto(s)
Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Periodo Preoperatorio , Adulto , Mapeo Encefálico/instrumentación , Estudios de Cohortes , Imagen Eco-Planar , Vías Eferentes/anatomía & histología , Estimulación Eléctrica , Electrodos Implantados , Electroencefalografía , Femenino , Humanos , Masculino , Corteza Motora/anatomía & histología , Corteza Motora/patología , Corteza Motora/cirugía , Procedimientos Neuroquirúrgicos/métodos , Desempeño Psicomotor/fisiología , Curva ROC , Reproducibilidad de los Resultados , Relación Señal-Ruido , Adulto Joven
20.
Childs Nerv Syst ; 32(1): 43-54, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26438547

RESUMEN

PURPOSE: In an era of residency duty-hour restrictions, there has been a recent effort to implement simulation-based training methods in neurosurgery teaching institutions. Several surgical simulators have been developed, ranging from physical models to sophisticated virtual reality systems. To date, there is a paucity of information describing the clinical benefits of existing simulators and the assessment strategies to help implement them into neurosurgical curricula. Here, we present a systematic review of the current models of simulation and discuss the state-of-the-art and future directions for simulation in neurosurgery. METHODS: Retrospective literature review. RESULTS: Multiple simulators have been developed for neurosurgical training, including those for minimally invasive procedures, vascular, skull base, pediatric, tumor resection, functional neurosurgery, and spine surgery. The pros and cons of existing systems are reviewed. CONCLUSION: Advances in imaging and computer technology have led to the development of different simulation models to complement traditional surgical training. Sophisticated virtual reality (VR) simulators with haptic feedback and impressive imaging technology have provided novel options for training in neurosurgery. Breakthrough training simulation using 3D printing technology holds promise for future simulation practice, proving high-fidelity patient-specific models to complement residency surgical learning.


Asunto(s)
Simulación por Computador , Neurocirugia/educación , Procedimientos Neuroquirúrgicos/educación , Encefalopatías/cirugía , Humanos , Procesamiento de Imagen Asistido por Computador , Neuroimagen , Neurocirugia/métodos , Pediatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA