Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Genes Dev ; 35(17-18): 1229-1242, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34385258

RESUMEN

Multiple transcription factors have been shown to promote pancreatic ß-cell differentiation, yet much less is known about negative regulators. Earlier epigenomic studies suggested that the transcriptional repressor REST could be a suppressor of endocrinogenesis in the embryonic pancreas. However, pancreatic Rest knockout mice failed to show abnormal numbers of endocrine cells, suggesting that REST is not a major regulator of endocrine differentiation. Using a different conditional allele that enables profound REST inactivation, we observed a marked increase in pancreatic endocrine cell formation. REST inhibition also promoted endocrinogenesis in zebrafish and mouse early postnatal ducts and induced ß-cell-specific genes in human adult duct-derived organoids. We also defined genomic sites that are bound and repressed by REST in the embryonic pancreas. Our findings show that REST-dependent inhibition ensures a balanced production of endocrine cells from embryonic pancreatic progenitors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Pez Cebra , Animales , Diferenciación Celular/genética , Ratones , Organogénesis/genética , Páncreas , Pez Cebra/genética
2.
EMBO J ; 39(9): e102808, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32154941

RESUMEN

Defects in transcriptional regulators of pancreatic exocrine differentiation have been implicated in pancreatic tumorigenesis, but the molecular mechanisms are poorly understood. The locus encoding the transcription factor HNF1A harbors susceptibility variants for pancreatic ductal adenocarcinoma (PDAC), while KDM6A, encoding Lysine-specific demethylase 6A, carries somatic mutations in PDAC. Here, we show that pancreas-specific Hnf1a null mutant transcriptomes phenocopy those of Kdm6a mutations, and both defects synergize with KrasG12D to cause PDAC with sarcomatoid features. We combine genetic, epigenomic, and biochemical studies to show that HNF1A recruits KDM6A to genomic binding sites in pancreatic acinar cells. This remodels the acinar enhancer landscape, activates differentiated acinar cell programs, and indirectly suppresses oncogenic and epithelial-mesenchymal transition genes. We also identify a subset of non-classical PDAC samples that exhibit the HNF1A/KDM6A-deficient molecular phenotype. These findings provide direct genetic evidence that HNF1A deficiency promotes PDAC. They also connect the tumor-suppressive role of KDM6A deficiency with a cell-specific molecular mechanism that underlies PDAC subtype definition.


Asunto(s)
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Histona Demetilasas/genética , Neoplasias Pancreáticas/genética , Animales , Carcinoma Ductal Pancreático/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Histona Demetilasas/metabolismo , Humanos , Ratones , Mutación , Especificidad de Órganos , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo
3.
Genes Dev ; 27(1): 52-63, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23271347

RESUMEN

Polycomb-mediated gene repression is essential for embryonic development, yet its precise role in lineage-specific programming is poorly understood. Here we inactivated Ring1b, encoding a polycomb-repressive complex 1 subunit, in pancreatic multipotent progenitors (Ring1b(progKO)). This caused transcriptional derepression of a subset of direct Ring1b target genes in differentiated pancreatic islet cells. Unexpectedly, Ring1b inactivation in differentiated islet ß cells (Ring1b(ßKO)) did not cause derepression, even after multiple rounds of cell division, suggesting a role for Ring1b in the establishment but not the maintenance of repression. Consistent with this notion, derepression in Ring1b(progKO) islets occurred preferentially in genes that were targeted de novo by Ring1b during pancreas development. The results support a model in which Ring1b bookmarks its target genes during embryonic development, and these genes are maintained in a repressed state through Ring1b-independent mechanisms in terminally differentiated cells. This work provides novel insights into how epigenetic mechanisms contribute to shaping the transcriptional identity of differentiated lineages.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Células Madre/citología , Células Madre/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Metilación de ADN , Embrión de Mamíferos , Epigénesis Genética , Masculino , Ratones , Neuronas/metabolismo , Complejo Represivo Polycomb 1/genética , Ubiquitina-Proteína Ligasas/genética
4.
Diabetologia ; 58(3): 558-65, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25500700

RESUMEN

AIMS/HYPOTHESIS: Pancreatic beta cells play a central role in the control of glucose homeostasis by secreting insulin to stimulate glucose uptake by peripheral tissues. Understanding the molecular mechanisms that control beta cell function and plasticity has critical implications for the pathophysiology and therapy of major forms of diabetes. Selective gene inactivation in pancreatic beta cells, using the Cre-lox system, is a powerful approach to assess the role of particular genes in beta cells and their impact on whole body glucose homeostasis. Several Cre recombinase (Cre) deleter mice have been established to allow inactivation of genes in beta cells, but many show non-specific recombination in other cell types, often in the brain. METHODS: We describe the generation of Ins1(Cre) and Ins1(CreERT2) mice in which the Cre or Cre-oestrogen receptor fusion protein (CreERT2) recombinases have been introduced at the initiation codon of the Ins1 gene. RESULTS: We show that Ins1(Cre) mice induce efficient and selective recombination of floxed genes in beta cells from the time of birth, with no recombination in the central nervous system. These mice have normal body weight and glucose homeostasis. Furthermore, we show that tamoxifen treatment of adult Ins1(CreERT2) mice crossed with Rosa26-tdTomato mice induces efficient recombination in beta cells. CONCLUSIONS/INTERPRETATION: These two strains of deleter mice are useful new resources to investigate the molecular physiology of pancreatic beta cells.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Femenino , Prueba de Tolerancia a la Glucosa , Insulina/genética , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Mutantes
5.
Hepatology ; 60(4): 1367-77, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24700364

RESUMEN

UNLABELLED: Severe liver diseases are characterized by expansion of liver progenitor cells (LPC), which correlates with disease severity. However, the origin and role of LPC in liver physiology and in hepatic injury remains a contentious topic. We found that ductular reaction cells in human cirrhotic livers express hepatocyte nuclear factor 1 homeobox B (HNF1ß). However, HNF1ß expression was not present in newly generated epithelial cell adhesion molecule (EpCAM)-positive hepatocytes. In order to investigate the role of HNF1ß-expressing cells we used a tamoxifen-inducible Hnf1ßCreER/R26R(Yfp/LacZ) mouse to lineage-trace Hnf1ß(+) biliary duct cells and to assess their contribution to LPC expansion and hepatocyte generation. Lineage tracing demonstrated no contribution of HNF1ß(+) cells to hepatocytes during liver homeostasis in healthy mice or after loss of liver mass. After acute acetaminophen or carbon tetrachloride injury no contribution of HNF1ß(+) cells to hepatocyte was detected. We next assessed the contribution of Hnf1ß(+) -derived cells following two liver injury models with LPC expansion, a diethoxycarbonyl-1,4-dihydro-collidin (DDC)-diet and a choline-deficient ethionine-supplemented (CDE)-diet. The contribution of Hnf1ß(+) cells to liver regeneration was dependent on the liver injury model. While no contribution was observed after DDC-diet treatment, mice fed with a CDE-diet showed a small population of hepatocytes derived from Hnf1ß(+) cells that were expanded to 1.86% of total hepatocytes after injury recovery. Genome-wide expression profile of Hnf1ß(+) -derived cells from the DDC and CDE models indicated that no contribution of LPC to hepatocytes was associated with LPC expression of genes related to telomere maintenance, inflammation, and chemokine signaling pathways. CONCLUSION: HNF1ß(+) biliary duct cells are the origin of LPC. HNF1ß(+) cells do not contribute to hepatocyte turnover in the healthy liver, but after certain liver injury, they can differentiate to hepatocytes contributing to liver regeneration.


Asunto(s)
Conductos Biliares/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Células Epiteliales/patología , Hepatocitos/patología , Regeneración Hepática/fisiología , Hígado/patología , Células Madre/patología , Acetaminofén/efectos adversos , Animales , Conductos Biliares/metabolismo , Tetracloruro de Carbono/efectos adversos , Diferenciación Celular/fisiología , Linaje de la Célula , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Dieta/efectos adversos , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Femenino , Factor Nuclear 1-beta del Hepatocito/metabolismo , Hepatocitos/metabolismo , Homeostasis/fisiología , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Transgénicos , Células Madre/metabolismo
6.
Genome Res ; 20(6): 722-32, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20395405

RESUMEN

The epigenome changes that underlie cellular differentiation in developing organisms are poorly understood. To gain insights into how pancreatic beta-cells are programmed, we profiled key histone methylations and transcripts in embryonic stem cells, multipotent progenitors of the nascent embryonic pancreas, purified beta-cells, and 10 differentiated tissues. We report that despite their endodermal origin, beta-cells show a transcriptional and active chromatin signature that is most similar to ectoderm-derived neural tissues. In contrast, the beta-cell signature of trimethylated H3K27, a mark of Polycomb-mediated repression, clusters with pancreatic progenitors, acinar cells and liver, consistent with the epigenetic transmission of this mark from endoderm progenitors to their differentiated cellular progeny. We also identified two H3K27 methylation events that arise in the beta-cell lineage after the pancreatic progenitor stage. One is a wave of cell-selective de novo H3K27 trimethylation in non-CpG island genes. Another is the loss of bivalent and H3K27me3-repressed chromatin in a core program of neural developmental regulators that enables a convergence of the gene activity state of beta-cells with that of neural cells. These findings reveal a dynamic regulation of Polycomb repression programs that shape the identity of differentiated beta-cells.


Asunto(s)
Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Islotes Pancreáticos/metabolismo , Páncreas/embriología , Proteínas Represoras/genética , Animales , Separación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Epigénesis Genética , Citometría de Flujo , Histonas/metabolismo , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Páncreas/citología , Proteínas del Grupo Polycomb
7.
Proc Natl Acad Sci U S A ; 107(7): 3105-10, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133622

RESUMEN

Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man.


Asunto(s)
Diabetes Mellitus/genética , Insulina/biosíntesis , Mutación/genética , Precursores de Proteínas/genética , Análisis Mutacional de ADN , Cartilla de ADN/genética , Dosificación de Gen , Genes Recesivos/genética , Humanos , Recién Nacido , Insulina/genética , Masculino , Sondas de Oligonucleótidos
8.
Cell Stem Cell ; 30(4): 488-497.e3, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028408

RESUMEN

Understanding the origin of pancreatic ß cells has profound implications for regenerative therapies in diabetes. For over a century, it was widely held that adult pancreatic duct cells act as endocrine progenitors, but lineage-tracing experiments challenged this dogma. Gribben et al. recently used two existing lineage-tracing models and single-cell RNA sequencing to conclude that adult pancreatic ducts contain endocrine progenitors that differentiate to insulin-expressing ß cells at a physiologically important rate. We now offer an alternative interpretation of these experiments. Our data indicate that the two Cre lines that were used directly label adult islet somatostatin-producing ∂ cells, which precludes their use to assess whether ß cells originate from duct cells. Furthermore, many labeled ∂ cells, which have an elongated neuron-like shape, were likely misclassified as ß cells because insulin-somatostatin coimmunolocalizations were not used. We conclude that most evidence so far indicates that endocrine and exocrine lineage borders are rarely crossed in the adult pancreas.


Asunto(s)
Células Secretoras de Insulina , Lagunas en las Evidencias , Diferenciación Celular , Páncreas/fisiología , Conductos Pancreáticos , Insulina , Somatostatina
9.
Nat Cell Biol ; 24(10): 1528-1540, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36202974

RESUMEN

The biological purpose of long non-coding RNAs (lncRNAs) is poorly understood. Haploinsufficient mutations in HNF1A homeobox A (HNF1A), encoding a homeodomain transcription factor, cause diabetes mellitus. Here, we examine HASTER, the promoter of an lncRNA antisense to HNF1A. Using mouse and human models, we show that HASTER maintains cell-specific physiological HNF1A concentrations through positive and negative feedback loops. Pancreatic ß cells from Haster mutant mice consequently showed variegated HNF1A silencing or overexpression, resulting in hyperglycaemia. HASTER-dependent negative feedback was essential to prevent HNF1A binding to inappropriate genomic regions. We demonstrate that the HASTER promoter DNA, rather than the lncRNA, modulates HNF1A promoter-enhancer interactions in cis and thereby regulates HNF1A transcription. Our studies expose a cis-regulatory element that is unlike classic enhancers or silencers, it stabilizes the transcription of its target gene and ensures the fidelity of a cell-specific transcription factor program. They also show that disruption of a mammalian lncRNA promoter can cause diabetes mellitus.


Asunto(s)
Factor Nuclear 1-alfa del Hepatocito , Regiones Promotoras Genéticas , ARN Largo no Codificante , Animales , Humanos , Ratones , Factor Nuclear 1-alfa del Hepatocito/genética , Mamíferos , ARN Largo no Codificante/genética , Transcripción Genética/genética , Transcripción Genética/fisiología
10.
Dev Cell ; 57(16): 1922-1936.e9, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35998583

RESUMEN

Sequence variants in cis-acting enhancers are important for polygenic disease, but their role in Mendelian disease is poorly understood. Redundancy between enhancers that regulate the same gene is thought to mitigate the pathogenic impact of enhancer mutations. Recent findings, however, have shown that loss-of-function mutations in a single enhancer near PTF1A cause pancreas agenesis and neonatal diabetes. Using mouse and human genetic models, we show that this enhancer activates an entire PTF1A enhancer cluster in early pancreatic multipotent progenitors. This leading role, therefore, precludes functional redundancy. We further demonstrate that transient expression of PTF1A in multipotent progenitors sets in motion an epigenetic cascade that is required for duct and endocrine differentiation. These findings shed insights into the genome regulatory mechanisms that drive pancreas differentiation. Furthermore, they reveal an enhancer that acts as a regulatory master key and is thus vulnerable to pathogenic loss-of-function mutations.


Asunto(s)
Diabetes Mellitus , Factores de Transcripción , Animales , Diferenciación Celular/genética , Diabetes Mellitus/metabolismo , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Recién Nacido , Ratones , Mutación/genética , Páncreas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/metabolismo
11.
Islets ; 13(5-6): 134-139, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34282714

RESUMEN

The Hnf1b-CreERT2 BAC transgenic (Tg(Hnf1b-cre/ERT2)1Jfer) has been used extensively to trace the progeny of pancreatic ducts in developmental, regeneration, or cancer models. Hnf1b-CreERT2 transgenics have been used to show that the cells that form the embryonic pancreas duct-like plexus are bipotent duct-endocrine progenitors, whereas adult mouse duct cells are not a common source of ß cells in various regenerative settings. The interpretation of such genetic lineage tracing studies is critically dependent on a correct understanding of the cell type specificity of recombinase activity with each reporter system. We have reexamined the performance of Hnf1b-CreERT2 with a Rosa26-RFP reporter transgene. This showed inducible recombination of up to 96% adult duct cells, a much higher efficiency than previously used reporter transgenes. Despite this high duct-cell excision, recombination in α and ß cells remained very low, similar to previously used reporters. However, nearly half of somatostatin-expressing δ cells showed reporter activation, which was due to Cre expression in δ cells rather than to duct to δ cell conversions. The high recombination efficiency in duct cells indicates that the Hnf1b-CreERT2 model can be useful for both ductal fate mapping and genetic inactivation studies. The recombination in δ cells does not modify the interpretation of studies that failed to show duct conversions to other cell types, but needs to be considered if this model is used in studies that aim to modify the plasticity of pancreatic duct cells.


Asunto(s)
Islotes Pancreáticos , Células Secretoras de Somatostatina , Animales , Factor Nuclear 1-beta del Hepatocito/genética , Integrasas/genética , Ratones , Ratones Transgénicos , Recombinación Genética , Transgenes
12.
Cell Rep ; 35(2): 108981, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852861

RESUMEN

Despite the central role of chromosomal context in gene transcription, human noncoding DNA variants are generally studied outside of their genomic location. This limits our understanding of disease-causing regulatory variants. INS promoter mutations cause recessive neonatal diabetes. We show that all INS promoter point mutations in 60 patients disrupt a CC dinucleotide, whereas none affect other elements important for episomal promoter function. To model CC mutations, we humanized an ∼3.1-kb region of the mouse Ins2 gene. This recapitulated developmental chromatin states and cell-specific transcription. A CC mutant allele, however, abrogated active chromatin formation during pancreas development. A search for transcription factors acting through this element revealed that another neonatal diabetes gene product, GLIS3, has a pioneer-like ability to derepress INS chromatin, which is hampered by the CC mutation. Our in vivo analysis, therefore, connects two human genetic defects in an essential mechanism for developmental activation of the INS gene.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Diabetes Mellitus/genética , Insulina/genética , Páncreas/metabolismo , Mutación Puntual , Proteínas Represoras/genética , Transactivadores/genética , Alelos , Animales , Cromatina/química , Cromatina/patología , Proteínas de Unión al ADN/deficiencia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Humanos , Recién Nacido , Enfermedades del Recién Nacido , Insulina/deficiencia , Ratones , Ratones Transgénicos , Páncreas/crecimiento & desarrollo , Páncreas/patología , Regiones Promotoras Genéticas , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Proteínas Represoras/deficiencia , Transactivadores/deficiencia , Transcripción Genética
13.
Endocr Dev ; 12: 33-45, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17923767

RESUMEN

Mutations in the genes encoding transcriptional regulators HNF1beta (TCF2), HNF1alpha (TCF1), and HNF4alpha cause autosomal dominant diabetes (also known as maturity-onset diabetes of the young). Herein, we review what we have learnt during recent years concerning the functions of these regulators in the developing and adult pancreas. Mouse studies have revealed that HNF1beta is a critical regulator of a transcriptional network that controls the specification, growth, and differentiation of the embryonic pancreas. HNF1beta mutations in humans accordingly often cause pancreas hypoplasia. By contrast, HNF1alpha and HNF4alpha have been shown to regulate the function of differentiated beta-cells. HNF1alpha and HNF4alpha mutations in patients thus cause decreased glucose-induced insulin secretion that leads to a progressive form of diabetes. HNF4alpha mutations paradoxically also cause in utero and neonatal hyperinsulinism, which later evolves to decreased glucose-induced secretion. Recent studies show that Hnf4alpha deficiency in mice causes not only abnormal insulin secretion, but also an impairment of the expansion of beta-cell mass that normally occurs during pregnancy. In line with this finding, we present data that Hnf1alpha-/- beta-cells expressing SV40 large T antigen show a severe impairment of proliferation and failure to form tumours. Collectively, these findings implicate HNF1beta as a regulator of pancreas organogenesis and differentiation, whereas HNF1alpha and HNF4alpha primarily regulate both growth and function of islet beta-cells.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Factor Nuclear 1-alfa del Hepatocito/fisiología , Factor Nuclear 1-beta del Hepatocito/fisiología , Factor Nuclear 4 del Hepatocito/fisiología , Páncreas/fisiología , División Celular , Diabetes Mellitus Tipo 2/genética , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-beta del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/genética , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Páncreas/crecimiento & desarrollo , Fenotipo
14.
Nat Cell Biol ; 17(5): 615-626, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25915126

RESUMEN

The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Células Madre Multipotentes/metabolismo , Proteínas Nucleares/metabolismo , Páncreas/metabolismo , Fosfoproteínas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Células Cultivadas , Biología Computacional , Proteínas de Unión al ADN/genética , Bases de Datos Genéticas , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Organogénesis , Páncreas/embriología , Fenotipo , Fosfoproteínas/genética , ARN Mensajero/metabolismo , Factores de Transcripción de Dominio TEA , Factores de Tiempo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
15.
Nat Genet ; 46(2): 136-143, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24413736

RESUMEN

Type 2 diabetes affects over 300 million people, causing severe complications and premature death, yet the underlying molecular mechanisms are largely unknown. Pancreatic islet dysfunction is central in type 2 diabetes pathogenesis, and understanding islet genome regulation could therefore provide valuable mechanistic insights. We have now mapped and examined the function of human islet cis-regulatory networks. We identify genomic sequences that are targeted by islet transcription factors to drive islet-specific gene activity and show that most such sequences reside in clusters of enhancers that form physical three-dimensional chromatin domains. We find that sequence variants associated with type 2 diabetes and fasting glycemia are enriched in these clustered islet enhancers and identify trait-associated variants that disrupt DNA binding and islet enhancer activity. Our studies illustrate how islet transcription factors interact functionally with the epigenome and provide systematic evidence that the dysregulation of islet enhancers is relevant to the mechanisms underlying type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Islotes Pancreáticos/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Bases , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Diabetes Mellitus Tipo 2/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Formaldehído , Estudio de Asociación del Genoma Completo , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Navegador Web
16.
Mol Endocrinol ; 25(2): 339-47, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21193557

RESUMEN

The expression pattern of genes important for pancreatic islet cell function requires the actions of cell-enriched transcription factors. Musculoaponeurotic fibrosarcoma homolog A (MafA) is a ß-cell-specific transcriptional activator critical to adult islet ß-cell function, with MafA mutant mice manifesting symptoms associated with human type 2 diabetes. Here, we describe that MafA expression is controlled by hepatocyte nuclear factor 1-α (Hnf1α), the transcription factor gene mutated in the most common monoallelic form of maturity onset diabetes of the young. There are six conserved sequence domains in the 5'-flanking MafA promoter, of which one, region 3 (R3) [base pair (bp) -8118/-7750] is principally involved in controlling the unique developmental and adult islet ß-cell-specific expression pattern. Chromatin immunoprecipitation analysis demonstrated that Hnf1α bound specifically within R3. Furthermore, in vitro DNA-binding experiments localized an Hnf1α regulatory element between bp -7822 and -7793, an area previously associated with stimulation by the islet developmental regulator, Islet1. However, site-directed mutational studies showed that Hnf1α was essential to R3-driven reporter activation through bp -7816/-7811. Significantly, MafA levels were dramatically reduced in the insulin(+) cell population remaining in embryonic and adult Hnf1α(-/-) pancreata. Our results demonstrate that Hnf1α regulates MafA in ß-cells and suggests that compromised MafA expression contributes to ß-cell dysfunction in maturity onset diabetes of the young.


Asunto(s)
Factor Nuclear 1-alfa del Hepatocito/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Animales , Animales Modificados Genéticamente , Western Blotting , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Expresión Génica , Factor Nuclear 1-alfa del Hepatocito/genética , Humanos , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos
18.
Dev Cell ; 17(6): 849-60, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20059954

RESUMEN

A longstanding unsettled question is whether pancreatic beta cells originate from exocrine duct cells. We have now used genetic labeling to fate map embryonic and adult pancreatic duct cells. We show that Hnf1beta+ cells of the trunk compartment of the early branching pancreas are precursors of acinar, duct, and endocrine lineages. Hnf1beta+ cells subsequent form the embryonic duct epithelium, which gives rise to both ductal and endocrine lineages, but not to acinar cells. By the end of gestation, the fate of Hnf1beta+ duct cells is further restrained. We provide compelling evidence that the ductal epithelium does not make a significant contribution to acinar or endocrine cells during neonatal growth, during a 6 month observation period, or during beta cell growth triggered by ligation of the pancreatic duct or by cell-specific ablation with alloxan followed by EGF/gastrin treatment. Thus, once the ductal epithelium differentiates it has a restricted plasticity, even under regenerative settings.


Asunto(s)
Células Secretoras de Insulina/citología , Páncreas/embriología , Animales , Femenino , Factor Nuclear 1-beta del Hepatocito/genética , Factor Nuclear 1-beta del Hepatocito/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Páncreas/citología , Páncreas Exocrino/embriología
19.
Mol Cell Biol ; 29(11): 2945-59, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19289501

RESUMEN

Heterozygous HNF1A mutations cause pancreatic-islet beta-cell dysfunction and monogenic diabetes (MODY3). Hnf1alpha is known to regulate numerous hepatic genes, yet knowledge of its function in pancreatic islets is more limited. We now show that Hnf1a deficiency in mice leads to highly tissue-specific changes in the expression of genes involved in key functions of both islets and liver. To gain insights into the mechanisms of tissue-specific Hnf1alpha regulation, we integrated expression studies of Hnf1a-deficient mice with identification of direct Hnf1alpha targets. We demonstrate that Hnf1alpha can bind in a tissue-selective manner to genes that are expressed only in liver or islets. We also show that Hnf1alpha is essential only for the transcription of a minor fraction of its direct-target genes. Even among genes that were expressed in both liver and islets, the subset of targets showing functional dependence on Hnf1alpha was highly tissue specific. This was partly explained by the compensatory occupancy by the paralog Hnf1beta at selected genes in Hnf1a-deficient liver. In keeping with these findings, the biological consequences of Hnf1a deficiency were markedly different in islets and liver. Notably, Hnf1a deficiency led to impaired large-T-antigen-induced growth and oncogenesis in beta cells yet enhanced proliferation in hepatocytes. Collectively, these findings show that Hnf1alpha governs broad, highly tissue-specific genetic programs in pancreatic islets and liver and reveal key consequences of Hnf1a deficiency relevant to the pathophysiology of monogenic diabetes.


Asunto(s)
Factor Nuclear 1-alfa del Hepatocito/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Hígado/citología , Hígado/metabolismo , Transcripción Genética , Región de Flanqueo 5'/genética , Animales , Secuencia de Bases , Proliferación Celular , Biología Computacional , Secuencia Conservada , Regulación de la Expresión Génica , Genoma/genética , Factor Nuclear 1-alfa del Hepatocito/deficiencia , Factor Nuclear 1-beta del Hepatocito/metabolismo , Hepatocitos/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos/genética
20.
Inorg Chem ; 41(21): 5373-81, 2002 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-12377030

RESUMEN

Three oxamato-bridged copper(II) complexes of formula [(Cu(H(2)O)(tmen)Cu(tmen))(mu-Cu(H(2)O)(Me(2)pba))](n)((PF(6))(2))(n).2nH(2)O (1), [(Cu(H(2)O)(tmen)Cu(NCS)(tmen))(mu-Cu(H(2)O)(Me(2)pba))](2)(ClO(4))(2).4H(2)O (2), and [(Cu(H(2)O)(tmen)Cu(NCS)(tmen))(mu-Cu(H(2)O)(Me(2)pba))](2)(PF(6))(2).4H(2)O (3), where Me(2)pba = 2,2-dimethyl-1,3-propylenebis(oxamato) and tmen = N,N,N',N'-tetramethylethylenediamine, have been synthesized and characterized. Their crystal structures were solved. Complex 1 crystallizes in the monoclinic system, space group P2(1), with a = 15.8364(3) A, b =8.4592(2) A, c = 15.952 A, beta = 101.9070(10) degrees, and Z = 2. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 6.69530(10) A, b = 18.2441(3) A, c = 31.6127(5) A, beta = 90.1230(10) degrees, and Z = 4. Complex 3 crystallizes in the monoclinic system, space group P2(1)/c, with a = 6.68970(10) A, b = 18.150 A, c = 32.1949(4) A, beta = 90.0820(10) degrees, and Z = 4. The three complexes have a central core in common: a trinuclear Cu(II) complex with the two terminal Cu(II) ions blocked by N,N,N',N'-tetramethylethylenediamine. The structure of complex 1 consists of trinuclear cationic entities connected by hydrogen bonds to produce a supramolecular one-dimensional array. The structure of complexes 2 and 3 consist of trinuclear cationic entities linked by pairs by hydrogen bonds between the water molecule of the central Cu(II) and one oxygen atom of the oxamato ligand of the neighboring entity, forming a hexanuclear complex. The magnetic properties of the three complexes were studied by susceptibility vs temperature measurement. For complexes 1-3 the fit was made by the irreducible tensor operator (ITO). The values obtained were J(1) = -386.48 cm(-1) and J(2) = 1.94 cm(-1) for 1, J(1) = -125.77 cm(-1) and J(2) = 0.85 cm(-1) for 2, and J(1) = -135.50 cm(-1) and J(2) = 0.94 cm(-1) for 3. In complex 1, the coordination polyhedron of the terminal Cu(II) atoms can be considered as square pyramidal; the apical positions are filled by the oxygen atom from a water molecule in the former and a F atom of the hexafluorophosphate anion in the latter showing a quasi-planar [Cu(CuMe(2)pba)Cu] network. For complexes 2 and 3, the square pyramidal environment of the terminal Cu(II) ions was strongly modified. To our knowledge, this is the first time that the longest distance (apical) in complexes with oxamato derivatives and bidentate amines as blocking ligands has been reported in one of the oxamato arms. The great difference in J(1) values between 1 and the other two complexes is interpreted as an orbital reversal of the magnetic orbitals of the terminal Cu(II) ions in 2 and 3.


Asunto(s)
Calcio/química , Etilenodiaminas/química , Compuestos Organometálicos/química , Estroncio/química , Cristalografía por Rayos X , Indicadores y Reactivos , Ligandos , Modelos Moleculares , Conformación Molecular , Bases de Schiff
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA