Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 168(3): 473-486.e15, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28129541

RESUMEN

Interspecies blastocyst complementation enables organ-specific enrichment of xenogenic pluripotent stem cell (PSC) derivatives. Here, we establish a versatile blastocyst complementation platform based on CRISPR-Cas9-mediated zygote genome editing and show enrichment of rat PSC-derivatives in several tissues of gene-edited organogenesis-disabled mice. Besides gaining insights into species evolution, embryogenesis, and human disease, interspecies blastocyst complementation might allow human organ generation in animals whose organ size, anatomy, and physiology are closer to humans. To date, however, whether human PSCs (hPSCs) can contribute to chimera formation in non-rodent species remains unknown. We systematically evaluate the chimeric competency of several types of hPSCs using a more diversified clade of mammals, the ungulates. We find that naïve hPSCs robustly engraft in both pig and cattle pre-implantation blastocysts but show limited contribution to post-implantation pig embryos. Instead, an intermediate hPSC type exhibits higher degree of chimerism and is able to generate differentiated progenies in post-implantation pig embryos.


Asunto(s)
Quimerismo , Edición Génica , Mamíferos/embriología , Animales , Blastocisto , Sistemas CRISPR-Cas , Bovinos , Embrión de Mamíferos/citología , Femenino , Humanos , Masculino , Mamíferos/clasificación , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Células Madre Pluripotentes , Ratas , Ratas Sprague-Dawley , Sus scrofa
2.
BMC Vet Res ; 20(1): 17, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191395

RESUMEN

BACKGROUND: The mare-foal relationship is essential for the well-being and growth of a foal. Mare's milk provides a foal with nutrients, protective immunity, and microbes. Within the first two weeks of life, there is a risk for a foal to suffer from diarrhea, particularly "foal heat diarrhea" which happens at about the time of a mare's estrus cycle but is more likely due to transitions in the microbiota in the foal's gastrointestinal (GI) tract. We hypothesized that this GI microbiota transition could be caused by changes in lysozyme and microbial populations in the mare's milk. To test this hypothesis, fifteen mare-foal pairs were followed in the first 15 days post-foaling. Every other day milk was collected from mares and rectal swabs were collected from foals. Lysozyme activity in the mare's milk was measured using a fluorescence assay. Microbial DNA was isolated from the milk and swabs and the V4 domain of 16 S rRNA genes were PCR amplified and sequenced using Illumina MiSeq technology. Microbial populations were analyzed using DADA2 and phyloseq within R. RESULTS: Mare's milk lysozyme activity peaked for samples at Day 1 and levels dropped to 72.5% of Day 1 activity by Day 15; however, microbial populations in the mare's milk did not vary significantly over the two weeks. Furthermore, levels of microbial diversity found in foal rectal swabs were initially similar to microbial diversity seen in mare's milk; however, over the first fifteen days, diversity increased for the foal rectal swab microbiota and swab microbial populations differed from milk microbes. A transition occurred shifting from microbes from the phylum Proteobacteria early in rectal swabs to those primarily from the phyla Firmicutes and Bacteroidota after the first few days post-foaling. These phyla contained several families and genera of microbes that promote utilization of milk components in healthy gut transition. Microbial abundance levels correlated more with days post-parturition than with lysozyme activity and mare's milk microbial populations. CONCLUSIONS: The findings suggest that much of the microbial populations responsible for the transition of the foal's gut comes from sources outside of mare's milk species and levels of lysozyme activity.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Femenino , Caballos , Leche , Muramidasa , Diarrea/veterinaria
3.
Br J Nutr ; 120(10): 1131-1148, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30400999

RESUMEN

Malnutrition remains a leading contributor to the morbidity and mortality of children under the age of 5 years and can weaken the immune system and increase the severity of concurrent infections. Livestock milk with the protective properties of human milk is a potential therapeutic to modulate intestinal microbiota and improve outcomes. The aim of this study was to develop an infection model of childhood malnutrition in the pig to investigate the clinical, intestinal and microbiota changes associated with malnutrition and enterotoxigenic Escherichia coli (ETEC) infection and to test the ability of goat milk and milk from genetically engineered goats expressing the antimicrobial human lysozyme (hLZ) milk to mitigate these effects. Pigs were weaned onto a protein-energy-restricted diet and after 3 weeks were supplemented daily with goat, hLZ or no milk for a further 2 weeks and then challenged with ETEC. The restricted diet enriched faecal microbiota in Proteobacteria as seen in stunted children. Before infection, hLZ milk supplementation improved barrier function and villous height to a greater extent than goat milk. Both goat and hLZ milk enriched for taxa (Ruminococcaceae) associated with weight gain. Post-ETEC infection, pigs supplemented with hLZ milk weighed more, had improved Z-scores, longer villi and showed more stable bacterial populations during ETEC challenge than both the goat and no milk groups. This model of childhood disease was developed to test the confounding effects of malnutrition and infection and demonstrated the potential use of hLZ goat milk to mitigate the impacts of malnutrition and infection.


Asunto(s)
Alimentación Animal , Infecciones por Escherichia coli/terapia , Desnutrición/terapia , Leche/química , Muramidasa/química , Animales , Animales Modificados Genéticamente , Peso Corporal , Dieta , Suplementos Dietéticos , Modelos Animales de Enfermedad , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli/microbiología , Heces , Femenino , Microbioma Gastrointestinal , Genotipo , Cabras , Enfermedades Intestinales , Intestinos/microbiología , Masculino , Tamaño de los Órganos , Permeabilidad , Porcinos , Destete
4.
J Nutr ; 147(11): 2050-2059, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28954839

RESUMEN

Background: Diarrheal diseases in infancy and childhood are responsible for substantial morbidity and mortality in developing nations. Lysozyme, an antimicrobial component of human milk, is thought to play a role in establishing a healthy intestinal microbiota and immune system. Consumption of breast milk has been shown to prevent intestinal infections and is a recommended treatment for infants with diarrhea.Objective: This study aimed to examine the ability of lysozyme-rich goat milk to prevent intestinal infection.Methods: Six-week-old Hampshire-Yorkshire pigs were assigned to treatment groups balanced for weight, sex, and litter and were fed milk from nontransgenic control goats (GM group) or human lysozyme transgenic goats (hLZM group) for 2 wk before they were challenged with porcine-specific enterotoxigenic Escherichia coli (ETEC). Fecal consistency, complete blood counts, intestinal histology, and microbial populations were evaluated.Results: Pigs in the hLZM group had less severe diarrhea than did GM pigs at 24 and 48 h after ETEC infection (P = 0.01 and 0.05, respectively), indicating a less severe clinical disease state. Relative to baseline, postmilk hLZM pigs had 19.9% and 137% enrichment in fecal Bacteroidetes (P = 0.028) and Paraprevotellaceae (P = 0.003), respectively, and a 93.8% reduction in Enterobacteriaceae (P = 0.007), whereas GM pigs had a 60.9% decrease in Lactobacillales (P = 0.003) and an 83.3% enrichment in Burkholderiales (P = 0.010). After ETEC infection, hLZM pigs tended to have lower amounts (68.7% less) of fecal Enterobacteriaceae than did GM pigs (P = 0.058). There were 83.1% fewer bacteria translocated into the mesenteric lymph nodes of hLZM pigs than into those of GM pigs (P = 0.039), and hLZM pigs had 34% lower mucin 1 and 61% higher tumor necrosis factor-α expression in the ileum than did GM pigs (P = 0.046 and 0.034, respectively).Conclusion: Results of this study indicate that human lysozyme milk consumption before and during ETEC infection has a positive effect on clinical disease, intestinal mucosa, and gut microbiota in young pigs.


Asunto(s)
Infecciones por Escherichia coli/veterinaria , Enfermedades Intestinales/veterinaria , Leche/química , Muramidasa/administración & dosificación , Enfermedades de los Porcinos/dietoterapia , Alimentación Animal/análisis , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Bacteroidetes , Dieta/veterinaria , Modelos Animales de Enfermedad , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli/dietoterapia , Heces/microbiología , Microbioma Gastrointestinal , Cabras/genética , Enfermedades Intestinales/dietoterapia , Intestinos/microbiología , Muramidasa/análisis , Porcinos , Enfermedades de los Porcinos/microbiología
5.
Transgenic Res ; 25(3): 321-7, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26820413

RESUMEN

At the time of the first Transgenic Animal Research Conference, the lack of knowledge about promoter, enhancer and coding regions of genes of interest greatly hampered our efforts to create transgenes that would express appropriately in livestock. Additionally, we were limited to gene insertion by pronuclear microinjection. As predicted then, widespread genome sequencing efforts and technological advancements have profoundly altered what we can do. There have been many developments in technology to create transgenic animals since we first met at Granlibakken in 1997, including the advent of somatic cell nuclear transfer-based cloning and gene editing. We can now create new transgenes that will express when and where we want and can target precisely in the genome where we want to make a change or insert a transgene. With the large number of sequenced genomes, we have unprecedented access to sequence information including, control regions, coding regions, and known allelic variants. These technological developments have ushered in new and renewed enthusiasm for the production of transgenic animals among scientists and animal agriculturalists around the world, both for the production of more relevant biomedical research models as well as for agricultural applications. However, even though great advancements have been made in our ability to control gene expression and target genetic changes in our animals, there still are no genetically engineered animal products on the market for food. World-wide there has been a failure of the regulatory processes to effectively move forward. Estimates suggest the world will need to increase our current food production 70 % by 2050; that is we will have to produce the total amount of food each year that has been consumed by mankind over the past 500 years. The combination of transgenic animal technology and gene editing will become increasingly more important tools to help feed the world. However, to date the practical benefits of these technologies have not yet reached consumers in any country and in the absence of predictable, science-based regulatory programs it is unlikely that the benefits will be realized in the short to medium term.


Asunto(s)
Animales Modificados Genéticamente/genética , Clonación de Organismos/tendencias , Ingeniería Genética/tendencias , Ganado/genética , Agricultura , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Genoma , Ganado/crecimiento & desarrollo , Técnicas de Transferencia Nuclear/tendencias
7.
Transgenic Res ; 24(4): 605-14, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26059245

RESUMEN

Genetic engineering, which was first developed in the 1980s, allows for specific additions to animals' genomes that are not possible through conventional breeding. Using genetic engineering to improve agricultural animals was first suggested when the technology was in the early stages of development by Palmiter et al. (Nature 300:611-615, 1982). One of the first agricultural applications identified was generating transgenic dairy animals that could produce altered or novel proteins in their milk. Human milk contains high levels of antimicrobial proteins that are found in low concentrations in the milk of ruminants, including the antimicrobial proteins lactoferrin and lysozyme. Lactoferrin and lysozyme are both part of the innate immune system and are secreted in tears, mucus, and throughout the gastrointestinal (GI) tract. Due to their antimicrobial properties and abundance in human milk, multiple lines of transgenic dairy animals that produce either human lactoferrin or human lysozyme have been developed. The focus of this review is to catalogue the different lines of genetically engineered dairy animals that produce either recombinant lactoferrin or lysozyme that have been generated over the years as well as compare the wealth of research that has been done on the in vitro and in vivo effects of the milk they produce. While recent advances including the development of CRISPRs and TALENs have removed many of the technical barriers to predictable and efficient genetic engineering in agricultural species, there are still many political and regulatory hurdles before genetic engineering can be used in agriculture. It is important to consider the substantial amount of work that has been done thus far on well established lines of genetically engineered animals evaluating both the animals themselves and the products they yield to identify the most effective path forward for future research and acceptance of this technology.


Asunto(s)
Lactoferrina/metabolismo , Leche/metabolismo , Muramidasa/metabolismo , Animales , Animales Modificados Genéticamente , Regulación de la Expresión Génica , Ingeniería Genética , Humanos
8.
Food Microbiol ; 46: 121-131, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25475275

RESUMEN

To protect infants from infection, human milk contains high levels of the enzyme lysozyme, unlike the milk of dairy animals. We have genetically engineered goats to express human lysozyme (hLZ milk) in their milk at 68% the amount found in human milk to help extend this protection. This study looked at the effect of hLZ on bacteria in raw milk over time. As the microbial diversity of goats' milk has yet to be investigated in depth using next-generation sequencing (NGS) technologies, we applied NGS and clone library sequencing (CLS) to determine the microbiota of raw goat milk (WT milk) and hLZ milk at early, mid and late lactation. Overall, in WT milk, the bacterial populations in milk at early and mid lactation were similar to each other with a shift occurring at late lactation. Both methods found Proteobacteria as the dominant bacteria at early and mid lactation, while Actinobacteria surged at late lactation. These changes were related to decreases in Pseudomonas and increases in Micrococcus. The bacterial populations in hLZ milk were similar to WT milk at early and mid lactation with the only significant differences occurring at late lactation with the elevation of Bacillaceae, Alicyclobacillaceae, Clostridiaceae and Halomonadaceae.


Asunto(s)
Animales Modificados Genéticamente/fisiología , Bacterias/aislamiento & purificación , Biodiversidad , Cabras/fisiología , Microbiota , Leche/enzimología , Leche/microbiología , Muramidasa/análisis , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/microbiología , Bacterias/clasificación , Bacterias/genética , Femenino , Cabras/genética , Cabras/microbiología , Humanos , Lactancia , Leche/química , Muramidasa/genética , Muramidasa/metabolismo
9.
Transgenic Res ; 23(2): 245-56, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24214495

RESUMEN

Risk assessment in transgenic plants is intrinsically different than that for transgenic animals; however both require the verification of proper transgene function and in conjunction, an estimate of any unintended effects caused by expression of the transgene. This work was designed to gather data regarding methodologies to detect pleiotropic effects at the whole animal level using a line of transgenic goats that produce the antimicrobial protein human lysozyme (hLZ) in their milk with the goal of using the milk to treat childhood diarrhea. Metabolomics was used to determine the serum metabolite profile of both the host (lactating does) and non-target organism (kid goats raised on control or hLZ milk) prior to weaning (60 days), at weaning (90 days) and 1 month post-weaning (120 days). In addition, intestinal histology of the kid goats was also carried out. Histological analysis of intestinal segments of the pre-weaning group revealed significantly wider duodenal villi (p = 0.014) and significantly longer villi (p = 0.028) and deeper crypts (p = 0.030) in the ileum of kid goats consuming hLZ milk. Serum metabolomics was capable of detecting differences over time but revealed no significant differences in metabolites between control and hLZ fed kids after correction for false discovery rate. Serum metabolomics of control or hLZ lactating does showed only one significant difference in an unknown metabolite (q = 0.0422). The results as a whole indicate that consumption of hLZ milk results in positive or insignificant intestinal morphology and metabolic changes. This work contributes to the establishment of the safety and durability of the hLZ mammary-specific transgene.


Asunto(s)
Técnicas de Transferencia de Gen/efectos adversos , Cabras/genética , Lactancia/fisiología , Metabolómica/métodos , Leche/enzimología , Muramidasa/metabolismo , Animales , Animales Modificados Genéticamente , Femenino , Cabras/sangre , Humanos , Mucosa Intestinal/citología , Metaboloma , Muramidasa/genética , Medición de Riesgo
10.
J Dairy Res ; 81(1): 30-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24345426

RESUMEN

Lactoferrin and lysozyme are antimicrobial and immunomodulatory proteins produced in high quantities in human milk that aid in gastrointestinal (GI) health and have beneficial effects when supplemented separately and in conjunction in human and animal diets. Ruminants produce low levels of lactoferrin and lysozyme; however, there are genetically engineered cattle and goats that respectively secrete recombinant human lactoferrin (rhLF-milk), and human lysozyme (hLZ-milk) in their milk. Effects of consumption of rhLF-milk, hLZ-milk and a combination of rhLF-and hLZ-milk were tested on young pigs as an animal model for the GI tract of children. Compared with control milk-fed pigs, pigs fed a combination of rhLF and hLZ (rhLF+hLZ) milk had a significantly deeper intestinal crypts and a thinner lamina propria layer. Pigs fed hLZ-milk, rhLF-milk and rhLF+hLZ had significantly reduced mean corpuscular volume (MCV) and red blood cells (RBCs) were significantly increased in pigs fed hLZ-milk and rhLF-milk and tended to be increased in rhLF+hLZ-fed pigs, indicating more mature RBCs. These results support previous research demonstrating that pigs fed milk containing rhLF or hLZ had decreased intestinal inflammation, and suggest that in some parameters the combination of lactoferrin and lysozyme have additive effects, in contrast to the synergistic effects reported when utilising in-vitro models.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Estado de Salud , Intestinos/fisiología , Lactoferrina/administración & dosificación , Leche/química , Muramidasa/administración & dosificación , Animales , Antiinfecciosos , Bovinos/metabolismo , Dieta/veterinaria , Recuento de Eritrocitos , Índices de Eritrocitos , Expresión Génica , Cabras/metabolismo , Humanos , Intestinos/anatomía & histología , Intestinos/microbiología , Recuento de Leucocitos , Leche Humana , Modelos Animales , Proteínas Recombinantes/administración & dosificación , Porcinos/anatomía & histología , Porcinos/sangre
11.
Transgenic Res ; 22(3): 571-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23073908

RESUMEN

Lactoferrin is an antimicrobial and immunomodulatory protein that is produced in high quantities in human milk and aids in the gastrointestinal (GI) maturation of infants. Beneficial health effects have been observed when supplementing human and animal diets with lactoferrin. A herd of genetically engineered cattle that secrete recombinant human lactoferrin in their milk (rhLF-milk) have been generated which provide an efficient production system and ideal medium for rhLF consumption. The effects of consumption of rhLF-milk were tested on young pigs as an animal model for the GI tract of children. When comparing rhLF-milk fed pigs to non-transgenic milk fed pigs (control), we observed that rhLF-milk fed pigs had beneficial changes in circulating leukocyte populations. There was a significant decrease in neutrophils (p = 0.0036) and increase in lymphocytes (p = 0.0017), leading to a decreased neutrophil to lymphocyte ratio (NLR) (p = 0.0153), which is an indicator of decreased systemic inflammation. We also observed changes in intestinal villi architecture. In the duodenum, rhLF-milk fed pigs tended to have taller villi (p = 0.0914) with significantly deeper crypts (p < 0.0001). In the ileum, pigs consuming rhLF-milk had villi that were significantly taller (p = 0.0002), with deeper crypts (p < 0.0001), and a thinner lamina propria (p = 0.0056). We observed no differences in cytokine expression between rhLF-milk and control-milk fed pigs, indicating that consumption of rhLF-milk did not change cytokine signaling in the intestines. Overall favorable changes in systemic health and GI villi architecture were observed; indicating that consumption of rhLF-milk has the potential to induce positive changes in the GI tract.


Asunto(s)
Alimentos Modificados Genéticamente , Tracto Gastrointestinal/efectos de los fármacos , Lactoferrina/farmacología , Leche , Porcinos/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Bovinos , Citocinas/metabolismo , Duodeno/citología , Duodeno/efectos de los fármacos , Duodeno/microbiología , Enterobacteriaceae/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Femenino , Humanos , Íleon/efectos de los fármacos , Inflamación/metabolismo , Lactoferrina/genética , Leucocitos/efectos de los fármacos , Masculino , Leche/fisiología
12.
J Equine Vet Sci ; 126: 104262, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36841345

RESUMEN

Tendinopathies remain the leading contributor to career-ending injuries in horses because of the complexity of tendon repair. As such, cell-based therapies like injections of adipose-derived mesenchymal stem cells (ADMSCs, or MSCs) into injured tendons are becoming increasingly popular though their long-term efficacy on a molecular and wholistic level remains contentious. Thus, we co-cultured equine MSCs with intrinsic (tendon proper) and extrinsic (peritenon) tendon cell populations to examine interactions between these cells. Gene expression for common tenogenic, perivascular, and differentiation markers was quantified at 48 and 120 hours. Additionally, cellular metabolism of proliferation was examined every 24 hours for peritenon and tendon proper cells co-cultured with MSCs. MSCs co-cultured with tendon proper or peritenon cells had altered expression profiles demonstrating trend toward tenogenic phenotype with the exception of decreases in type I collagen (COL1A1). Peritenon cells co-cultured with MSCs had a trending and significant decrease in biglycan (BGN) and CSPG4 at 48 hours and 120 hours but overall significant increases in lysyl oxidase (LOX), mohawk (MKX), and scleraxis (SCX) within 48 hours. Tendon proper cells co-cultured with MSCs also exhibited increases in LOX and SCX at 48 hours. Furthermore, cell proliferation improved overall for tendon proper cells co-cultured with MSCs. The co-culture study results suggest that adipose-derived MSCs contribute beneficially to tenogenic stimulation of peritenon or tendon proper cells.


Asunto(s)
Células Madre Mesenquimatosas , Tendones , Caballos , Animales , Técnicas de Cocultivo/veterinaria , Tendones/metabolismo , Células Madre Mesenquimatosas/metabolismo
13.
Sci Rep ; 13(1): 15072, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699945

RESUMEN

A single locus on the X chromosome codes for androgen receptor (AR) although this gene is subject to alternative splicing. AR is expressed in multiple tissues in males and females and is essential for reproductive success in the male. Since male and female mice are viable following naturally occurring and engineered loss of function with male mice infertile as anticipated, functional deletion of AR in pigs was hypothesized to provide a genetic containment strategy for males with edited genomes. In addition, deletion of AR might be a method to manage boar taint, hence contributing to a perceived improvement in animal welfare. The CRISPR/Cas9 technology was used to edit either exon 2 or exon 5 of the pig AR gene. Although pregnancies were established following embryo transfer of edited embryos, they were not maintained beyond day 25. Furthermore, normal M:F sex ratios were present in edited blastocysts and 19-day fetuses, but all fetuses recovered on day 21 or later were female. The pig AR gene differs from the mouse in having a U2 spliceosome component encoded in the intronic region. Hence, the absence of fetal survival beyond day 25 may be due to interference with the U2 component rather than AR.


Asunto(s)
Receptores Androgénicos , Empalmosomas , Masculino , Femenino , Embarazo , Porcinos , Animales , Ratones , Empalmosomas/genética , Receptores Androgénicos/genética , Feto , Intrones , Exones/genética
14.
Appl Environ Microbiol ; 78(17): 6153-60, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22752159

RESUMEN

Human milk contains antimicrobial factors such as lysozyme and lactoferrin that are thought to contribute to the development of an intestinal microbiota beneficial to host health. However, these factors are lacking in the milk of dairy animals. Here we report the establishment of an animal model to allow the dissection of the role of milk components in gut microbiota modulation and subsequent changes in overall and intestinal health. Using milk from transgenic goats expressing human lysozyme at 68%, the level found in human milk and young pigs as feeding subjects, the fecal microbiota was analyzed over time using 16S rRNA gene sequencing and the G2 Phylochip. The two methods yielded similar results, with the G2 Phylochip giving more comprehensive information by detecting more OTUs. Total community populations remained similar within the feeding groups, and community member diversity was changed significantly upon consumption of lysozyme milk. Levels of Firmicutes (Clostridia) declined whereas those of Bacteroidetes increased over time in response to the consumption of lysozyme-rich milk. The proportions of these major phyla were significantly different (P < 0.05) from the proportions seen with control-fed animals after 14 days of feeding. Within phyla, the abundance of bacteria associated with gut health (Bifidobacteriaceae and Lactobacillaceae) increased and the abundance of those associated with disease (Mycobacteriaceae, Streptococcaceae, Campylobacterales) decreased with consumption of lysozyme milk. This study demonstrated that a single component of the diet with bioactivity changed the gut microbiome composition. Additionally, this model enabled the direct examination of the impact of lysozyme on beneficial microbe enrichment versus detrimental microbe reduction in the gut microbiome community.


Asunto(s)
Antibacterianos/metabolismo , Bacterias/clasificación , Bacterias/efectos de los fármacos , Biota , Heces/microbiología , Leche/enzimología , Muramidasa/metabolismo , Animales , Animales Modificados Genéticamente , Bacterias/genética , Cabras , Humanos , Modelos Animales , Porcinos
15.
BMC Gastroenterol ; 12: 106, 2012 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-22883300

RESUMEN

BACKGROUND: Enteroaggregative Escherichia coli (EAEC) causes diarrhea, malnutrition and poor growth in children. Human breast milk decreases disease-causing bacteria by supplying nutrients and antimicrobial factors such as lysozyme. Goat milk with and without human lysozyme (HLZ) may improve the repair of intestinal barrier function damage induced by EAEC. This work investigates the effect of the milks on intestinal barrier function repair, bacterial adherence in Caco-2 and HEp-2 cells, intestinal cell proliferation, migration, viability and apoptosis in IEC-6 cells in the absence or presence of EAEC. METHODS: Rat intestinal epithelial cells (IEC-6, ATCC, Rockville, MD) were used for proliferation, migration and viability assays and human colon adenocarcinoma (Caco-2, ATCC, Rockville, MD) and human larynx carcinoma (HEp-2, ATCC, Rockville, MD) cells were used for bacterial adhesion assays. Goats expressing HLZ in their milk were generated and express HLZ in milk at concentration of 270 µg/ml. Cells were incubated with pasteurized milk from either transgenic goats expressing HLZ or non-transgenic control goats in the presence and absence of EAEC strain 042 (O44:H18). RESULTS: Cellular proliferation was significantly greater in the presence of both HLZ transgenic and control goat milk compared to cells with no milk. Cellular migration was significantly decreased in the presence of EAEC alone but was restored in the presence of milk. Milk from HLZ transgenic goats had significantly more migration compared to control milk. Both milks significantly reduced EAEC adhesion to Caco-2 cells and transgenic milk resulted in less colonization than control milk using a HEp-2 assay. Both milks had significantly increased cellular viability as well as less apoptosis in both the absence and presence of EAEC. CONCLUSIONS: These data demonstrated that goat milk is able to repair intestinal barrier function damage induced by EAEC and that goat milk with a higher concentration of lysozyme offers additional protection.


Asunto(s)
Escherichia coli/fisiología , Intestinos/efectos de los fármacos , Intestinos/patología , Leche/enzimología , Muramidasa/farmacología , Animales , Animales Modificados Genéticamente , Apoptosis/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Epitelio/efectos de los fármacos , Epitelio/microbiología , Epitelio/patología , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Cabras , Humanos , Técnicas In Vitro , Intestinos/microbiología , Muramidasa/genética , Ratas
16.
PLoS One ; 17(5): e0258176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35511785

RESUMEN

The rumen is a complex ecosystem that plays a critical role in our efforts to improve feed efficiency of cattle and reduce their environmental impacts. Sequencing of the 16S rRNA gene provides a powerful tool to survey the bacterial and some archaeal. Oral stomach tubing a cow to collect a rumen sample is a rapid, cost-effective alternative to rumen cannulation for acquiring rumen samples. In this study, we determined how sampling method (oral stomach tubing vs cannulated grab sample), as well as rumen fraction type (liquid vs solid), bias the bacterial and archaeal communities observed. Liquid samples were further divided into liquid strained through cheesecloth and unstrained. Fecal samples were also collected to determine how these differed from the rumen sample types. The abundance of major archaeal communities was not different at the family level in samples acquired via rumen cannula or stomach tube. In contrast to the stable archaeal communities across sample type, the bacterial order WCHB1-41 (phylum Kiritimatiellaeota) was enriched in both liquid strained and unstrained samples as well as the family Prevotellaceae as compared to grab samples. However, these liquid samples had significantly lower abundance of Lachnospiraceae compared with grab samples. Solid samples strained of rumen liquid most closely resembled the grab samples containing both rumen liquid and solid particles obtained directly from the rumen cannula; therefore, inclusion of particulate matter is important for an accurate representation of the rumen bacteria. Stomach tube samples were the most variable and were most representative of the liquid phase. In comparison with a grab sample, stomach tube samples had significantly lower abundance of Lachnospiraceae, Fibrobacter and Treponema. Fecal samples did not reflect the community composition of the rumen, as fecal samples had significantly higher relative abundance of Ruminococcaceae and significantly lower relative abundance of Lachnospiraceae compared with grab samples.


Asunto(s)
Ecosistema , Rumen , Alimentación Animal/análisis , Animales , Archaea/genética , Bacterias/genética , Bovinos , Dieta/veterinaria , Femenino , ARN Ribosómico 16S/genética , Rumen/microbiología
17.
Front Nutr ; 9: 894640, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118759

RESUMEN

Malnourishment is a risk factor for childhood mortality, jeopardizing the health of children by aggravating pneumonia/acute respiratory infections and diarrheal diseases. Malnourishment causes morphophysiological changes resulting in stunting and wasting that have long-lasting consequences such as cognitive deficit and metabolic dysfunction. Using a pig model of malnutrition, the interplay between the phenotypic data displayed by the malnourished animals, the gene expression pattern along the intestinal tract, microbiota composition of the intestinal contents, and hepatic metabolite concentrations from the same animals were correlated using a multi-omics approach. Samples from the duodenum, jejunum, and ileum of malnourished (protein and calorie-restricted diet) and full-fed (no dietary restrictions) piglets were subjected to RNA-seq. Gene co-expression analysis and phenotypic correlations were made with WGCNA, while the integration of transcriptome with microbiota composition and the hepatic metabolite profile was done using mixOmics. Malnourishment caused changes in tissue gene expression that influenced energetic balance, cell proliferation, nutrient absorption, and response to stress. Repression of antioxidant genes, including glutathione peroxidase, in coordination with induction of metal ion transporters corresponded to the hepatic metabolite changes. These data indicate oxidative stress in the intestine of malnourished animals. Furthermore, several of the phenotypes displayed by these animals could be explained by changes in gene expression.

18.
Transgenic Res ; 20(6): 1235-43, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21311970

RESUMEN

In addition to its well-recognized antimicrobial properties, lysozyme can also modulate the inflammatory response. This ability may be particularly important in the gastrointestinal tract where inappropriate inflammatory reactions can damage the intestinal epithelium, leading to significant health problems. The consumption of milk from transgenic goats producing human lysozyme (hLZ) in their milk therefore has the potential to positively impact intestinal health. In order to investigate the effect of hLZ-containing milk on the inflammatory response, young pigs were fed pasteurized milk from hLZ or non-transgenic control goats and quantitative real-time PCR was performed to assess local expression of TNF-α, IL-8, and TGF-ß1 in the small intestine. Histological changes were also investigated, specifically looking at villi width, length, crypt depth, and lamina propria thickness along with cell counts for intraepithelial lymphocytes and goblet cells. Significantly higher expression of anti-inflammatory cytokine TGF-ß1 was seen in the ileum of pigs fed pasteurized milk containing hLZ (P = 0.0478), along with an increase in intraepithelial lymphocytes (P = 0.0255), and decrease in lamina propria thickness in the duodenum (P = 0.0001). Based on these results we conclude that consuming pasteurized milk containing hLZ does not induce an inflammatory response and improves the health of the small intestine in pigs.


Asunto(s)
Citocinas/inmunología , Intestino Delgado/inmunología , Leche/inmunología , Muramidasa/inmunología , Animales , Animales Modificados Genéticamente/inmunología , Recuento de Células , Duodeno/inmunología , Duodeno/patología , Duodeno/fisiología , Cabras/genética , Cabras/inmunología , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/fisiología , Intestino Delgado/patología , Intestino Delgado/fisiología , Linfocitos/inmunología , Pasteurización , Reacción en Cadena en Tiempo Real de la Polimerasa , Porcinos
20.
Nutr Res ; 91: 44-56, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34134040

RESUMEN

Severe acute malnutrition (SAM), due to poor energy and/or protein intake, is associated with poor growth, depressed immune function, and long-term impacts on metabolic function. As the liver is a major metabolic organ and malnutrition poses metabolic stress, we hypothesize that SAM will be associated with alterations in the hepatic metabolome reflective of oxidative stress, gluconeogenesis, and ketogenesis. Thus, the purpose of this secondary analysis was to understand how SAM alters hepatic metabolism using a piglet model. Weanling piglets were feed either a reference (REF) or protein-energy deficient diet (MAL) for 5 weeks. After dietary treatment MAL piglets were severely underweight (weight-for-age Z-score of -3.29, Welch's t test, P = .0007), moderately wasted (weight-for-length Z-score of-2.49, Welch's t test, P = .003), and tended toward higher hepatic triglyceride content (Welch's t test, P = .07). Hematologic and blood biochemical measurements were assessed at baseline and after dietary treatment. The hepatic metabolome was investigated using 1H-NMR spectroscopy. Hepatic concentrations of betaine, cysteine, and glutathione tended to be lower in MAL (Welch's t test with FDR correction, P < .1), while inosine, lactate, and methionine sulfoxide concentrations were higher in MAL (inosine: P = .0448, lactate: P = .0258, methionine sulfoxide: P = .0337). These changes suggest that SAM is associated with elevated hepatic oxidative stress, increased gluconeogenesis, and alterations in 1-carbon metabolism.


Asunto(s)
Hígado/metabolismo , Metaboloma , Estrés Oxidativo , Desnutrición Aguda Severa/metabolismo , Animales , Betaína/metabolismo , Cisteína/metabolismo , Dieta , Gluconeogénesis , Glutatión/metabolismo , Inosina/metabolismo , Ácido Láctico/metabolismo , Masculino , Metabolómica/métodos , Metionina/análogos & derivados , Metionina/metabolismo , Safrol/análogos & derivados , Safrol/metabolismo , Desnutrición Aguda Severa/complicaciones , Porcinos , Delgadez , Triglicéridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA