Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem ; 25(12): 3235-3246, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28495385

RESUMEN

Neurodegenerative disorders, such as Parkinson's disease and Alzheimer's disease, threaten the lives of millions of people and the number of affected patients is constantly growing with the increase of the aging population. Small molecule neurotrophic agents represent promising therapeutics for the pharmacological management of neurodegenerative diseases. In this study, a series of caffeic acid amide analogues with variable alkyl chain lengths, including ACAF3 (C3), ACAF4 (C4), ACAF6 (C6), ACAF8 (C8) and ACAF12 (C12) were synthesized and their neurotrophic activity was examined by different methods in PC12 neuronal cells. We found that all caffeic acid amide derivatives significantly increased survival in PC12 neuronal cells in serum-deprived conditions at 25µM, as measured by the MTT assay. ACAF4, ACAF6 and ACAF8 at 5µM also significantly enhanced the effect of nerve growth factor (NGF) in inducing neurite outgrowth, a sign of neuronal differentiation. The neurotrophic effects of amide derivatives did not seem to be mediated by direct activation of tropomyosin receptor kinase A (TrkA) receptor, since K252a, a potent TrkA antagonist, did not block the neuronal survival enhancement effect. Similarly, the active compounds did not activate TrkA as measured by immunoblotting with anti-phosphoTrkA antibody. We also examined the effect of amide derivatives on signaling pathways involved in survival and differentiation by immunoblotting. ACAF4 and ACAF12 induced ERK1/2 phosphorylation in PC12 cells at 5 and 25µM, while ACAF12 was also able to significantly increase AKT phosphorylation at 5 and 25µM. Molecular docking studies indicated that compared to the parental compound caffeic acid, ACAF12 exhibited higher binding energy with phosphoinositide 3-kinase (PI3K) as a putative molecular target. Based on Lipinski's rule of five, all of the compounds obeyed three molecular descriptors (HBD, HBA and MM) in drug-likeness test. Taken together, these findings show for the first time that caffeic amides possess strong neurotrophic effects exerted via modulation of ERK1/2 and AKT signaling pathways presumably by activation of PI3K and thus represent promising agents for the discovery of neurotrophic compounds for management of neurodegenerative diseases.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Células PC12 , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos
2.
ChemMedChem ; 16(1): 250-258, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-32737944

RESUMEN

To search for novel p53 activators, four series of novel (S)- and (R)-tryptophanol-derived oxazoloisoindolinones were synthesized in a straightforward manner and their antiproliferative activity was evaluated in the human colorectal cancer HCT116 cell line. Structural optimization of the hit compound SLMP53-1 led to the identification of a (R)-tryptophanol-derived isoindolinone that was found to be six-fold more active, with increased selectivity for HCT116 cells with p53 and with low toxicity in normal cells. Binding studies with MDM2 showed that the antiproliferative activity of tryptophanol-derived isoindolinones does not involve inhibition of the main negative regulator of the p53 protein. Molecular docking simulations showed that although these molecules establish hydrophobic interactions with MDM2, they do not possess the required features to bind MDM2.


Asunto(s)
Oxindoles/química , Triptófano/análogos & derivados , Proteína p53 Supresora de Tumor/agonistas , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Oxindoles/metabolismo , Oxindoles/farmacología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Relación Estructura-Actividad , Triptófano/química , Proteína p53 Supresora de Tumor/metabolismo
3.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 3): 307-13, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27006794

RESUMEN

The crystal structures of five 6-mercaptopurine derivatives, viz. 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(3-meth-oxy-phen-yl)ethan-1-one (1), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-meth-oxy-phen-yl)ethan-1-one (2), C16H14N4O3S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-chloro-phen-yl)ethan-1-one (3), C15H11ClN4O2S, 2-[(9-acetyl-9H-purin-6-yl)sulfan-yl]-1-(4-bromo-phen-yl)ethan-1-one (4), C15H11BrN4O2S, and 1-(3-meth-oxy-phen-yl)-2-[(9H-purin-6-yl)sulfan-yl]ethan-1-one (5), C14H12N4O2S. Compounds (2), (3) and (4) are isomorphous and accordingly their mol-ecular and supra-molecular structures are similar. An analysis of the dihedral angles between the purine and exocyclic phenyl rings show that the mol-ecules of (1) and (5) are essentially planar but that in the case of the three isomorphous compounds (2), (3) and (4), these rings are twisted by a dihedral angle of approximately 38°. With the exception of (1) all mol-ecules are linked by weak C-H⋯O hydrogen bonds in their crystals. There is π-π stacking in all compounds. A Cambridge Structural Database search revealed the existence of 11 deposited compounds containing the 1-phenyl-2-sulfanyl-ethanone scaffold; of these, only eight have a cyclic ring as substituent, the majority of these being heterocycles.

4.
Chem Biol Drug Des ; 88(6): 926-937, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27465784

RESUMEN

The number of people affected by neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease is rapidly increasing owing to the global increase in life expectancy. Small molecules with neurotrophic effects have great potential for management of these neurological disorders. In this study, different (C1-C12) alkyl ester derivatives of hydroxycinnamic acids (HCAs) were synthesized (a total of 30 compounds). The neurotrophic capacity of the test compounds was examined by measuring promotion of survival in serum-deprived conditions and enhancement of nerve growth factor (NGF)-induced neurite outgrowth in PC12 neuronal cells. p-Coumaric, ferulic, and sinapic acids and their esters did not alter cell survival, while caffeic acid and all its alkyl esters, especially decyl and dodecyl caffeate, significantly promoted neuronal survival at 25 µm. Methyl, ethyl, propyl, and butyl caffeate esters also significantly enhanced NGF-induced neurite outgrowth, among which the most effective ones were propyl and butyl esters, which at 5 µm led to 25- and 22-fold increases in the number of neurites, respectively. The findings of the docking study suggested phosphatidylinositol 3-kinase (PI3K) as the potential molecular target. In conclusion, our findings demonstrate that alkyl esters of caffeic acid can be useful as scaffolds for the discovery of therapeutic agents for neurodegenerative diseases.


Asunto(s)
Ácidos Cumáricos/química , Fármacos Neuroprotectores/farmacología , Animales , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Factor de Crecimiento Nervioso/fisiología , Neuritas , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/uso terapéutico , Células PC12 , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA