Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Crit Rev Food Sci Nutr ; 62(13): 3658-3697, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33399020

RESUMEN

The therapeutic effects of carotenoids as dietary supplements to control or even treat some specific diseases including diabetic retinopathy, cardiovascular diseases, bacterial infections, as well as breast, prostate, and skin cancer are discussed in this review and also thoughts on future research for their widespread use are emphasized. From the stability standpoint, carotenoids have low bioavailability and bioaccessibility owing to their poor water solubility, deterioration in the presence of environmental stresses such as oxygen, light, and high heat as well as rapid degradation during digestion. Nanoencapsulation technologies as wall or encapsulation materials have been increasingly used for improving food product functionality. Nanoencapsulation is a versatile process employed for the protection, entrapment, and the delivery of food bioactive products including carotenoids from diverse environmental conditions for extended shelf lives and for providing controlled release. Therefore, we present here, recent (mostly during the last five years) nanoencapsulation methods of carotenoids with various nanocarriers. To us, this review can be considered as the first highlighting not only the potential therapeutic effects of carotenoids on various diseases but also their most effective nanodelivery systems.HighlightsBioactive compounds are of deep interest to improve food properties.Carotenoids (such as ß-carotene and xanthophylls) play indispensable roles in maintaining human health and well-being.A substantial research effort has been carried out on developing beneficial nanodelivery systems for various carotenoids.Nanoencapsulation of carotenoids can enhance their functional properties.Stable nanoencapsulated carotenoids could be utilized in food products.


Asunto(s)
Carotenoides , Sistema de Administración de Fármacos con Nanopartículas , Disponibilidad Biológica , Suplementos Dietéticos , Excipientes , Humanos
2.
Bioorg Chem ; 111: 104900, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33894429

RESUMEN

Due to their unique pharmacological characteristics, methylxanthines are known as therapeutic agents in a fascinating range of medicinal scopes. In this report, we aimed to examine some biological effects of previously synthesized 8-alkylmercaptocaffeine derivatives. Cytotoxic and antioxidative activity of 8-alkylmercaptocaffeine derivatives were measured in malignant A549, MCF7, and C152 cell lines. Assessment of cGMP levels and caspase-3 activity were carried out using a colorimetric competitive ELISA kit. Computational approaches were employed to discover the inhibitory mechanism of synthesized compounds. Among the twelve synthesized derivatives, three compounds (C1, C5, and C7) bearing propyl, heptyl, and 3-methyl-butyl moieties showed higher and more desirable cytotoxic activity against all the studied cell lines (IC50 < 100 µM). Furthermore, C5 synergistically enhanced cisplatin-induced cytotoxicity in MCF-7 cells (CI < 1). Both C5 and C7 significantly increased caspase-3 activity and intracellular cGMP levels at specific time intervals in all studied cell lines (P < 0.05). However, these derivatives did not elevate LDH leakage (P > 0.05) and exhibited no marked ameliorating effects on oxidative damage (P > 0.05). Computational studies showed that H-bond formation between the nitrogen atom in pyrazolo[4,3-D] pyrimidine moiety with Gln817 and creating a hydrophobic cavity result in the stability of the alkyl group in the PDE5A active site. We found that synthesized 8-alkylmercaptocaffeine derivatives induced cell death in different cancer cells through the cGMP pathway. These findings will help us to get a deeper insight into the role of methylxanthines as useful alternatives to conventional cancer therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Cafeína/farmacología , Simulación del Acoplamiento Molecular , Antineoplásicos/síntesis química , Antineoplásicos/química , Antioxidantes/síntesis química , Antioxidantes/química , Compuestos de Bifenilo/antagonistas & inhibidores , Cafeína/análogos & derivados , Cafeína/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Picratos/antagonistas & inhibidores , Relación Estructura-Actividad
3.
Front Pharmacol ; 15: 1370506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633617

RESUMEN

Adenylyl cyclases (ACs) are crucial effector enzymes that transduce divergent signals from upstream receptor pathways and are responsible for catalyzing the conversion of ATP to cAMP. The ten AC isoforms are categorized into four main groups; the class III or calcium-inhibited family of ACs comprises AC5 and AC6. These enzymes are very closely related in structure and have a paucity of selective activators or inhibitors, making it difficult to distinguish them experimentally. AC5 and AC6 are highly expressed in the heart and vasculature, as well as the spinal cord and brain; AC6 is also abundant in the lungs, kidney, and liver. However, while AC5 and AC6 have similar expression patterns with some redundant functions, they have distinct physiological roles due to differing regulation and cAMP signaling compartmentation. AC5 is critical in cardiac and vascular function; AC6 is a key effector of vasodilatory pathways in vascular myocytes and is enriched in fetal/neonatal tissues. Expression of both AC5 and AC6 decreases in heart failure; however, AC5 disruption is cardio-protective, while overexpression of AC6 rescues cardiac function in cardiac injury. This is a comprehensive review of the complex regulation of AC5 and AC6 in the cardiovascular system, highlighting overexpression and knockout studies as well as transgenic models illuminating each enzyme and focusing on post-translational modifications that regulate their cellular localization and biological functions. We also describe pharmacological challenges in the design of isoform-selective activators or inhibitors for AC5 and AC6, which may be relevant to developing new therapeutic approaches for several cardiovascular diseases.

4.
Biology (Basel) ; 12(4)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37106773

RESUMEN

BACKGROUND: The adenylyl cyclase (AC) pathway, crucial for pulmonary vasodilation, is inhibited by hypoxia. Forskolin (FSK) binds allosterically to AC, stimulating ATP catalysis. As AC6 is the primary AC isoform in the pulmonary artery, selective reactivation of AC6 could provide targeted reinstatement of hypoxic AC activity. This requires elucidation of the FSK binding site in AC6. METHODS: HEK293T cells stably overexpressing AC 5, 6, or 7 were incubated in normoxia (21% O2) or hypoxia (10% O2) or exposed to s-nitrosocysteine (CSNO). AC activity was measured using terbium norfloxacin assay; AC6 structure built by homology modeling; ligand docking to examine FSK-interacting amino acids; roles of selected residues determined by site-directed mutagenesis; FSK-dependent cAMP generation measured in wild-type and FSK-site mutants by biosensor-based live cell assay. RESULTS: Only AC6 is inhibited by hypoxia and nitrosylation. Homology modeling and docking revealed residues T500, N503, and S1035 interacting with FSK. Mutation of T500, N503, or S1035 decreased FSK-stimulated AC activity. FSK site mutants were not further inhibited by hypoxia or CSNO; however, mutation of any of these residues prevented AC6 activation by FSK following hypoxia or CSNO treatment. CONCLUSIONS: FSK-interacting amino acids are not involved in the hypoxic inhibition mechanism. This study provides direction to design FSK derivatives for selective activation of hypoxic AC6.

5.
Chem Biol Drug Des ; 100(5): 699-721, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36002440

RESUMEN

Application of materials capable of energy harvesting to increase the efficiency and environmental adaptability is sometimes reflected in the ability of discovery of some traces in an environment-either experimentally or computationally-to enlarge practical application window. The emergence of computational methods, particularly computer-aided drug discovery (CADD), provides ample opportunities for the rapid discovery and development of unprecedented drugs. The expensive and time-consuming process of traditional drug discovery is no longer feasible, for nowadays the identification of potential drug candidates is much easier for therapeutic targets through elaborate in silico approaches, allowing the prediction of the toxicity of drugs, such as drug repositioning (DR) and chemical genomics (chemogenomics). Coronaviruses (CoVs) are cross-species viruses that are able to spread expeditiously from the into new host species, which in turn cause epidemic diseases. In this sense, this review furnishes an outline of computational strategies and their applications in drug discovery. A special focus is placed on chemogenomics and DR as unique and emerging system-based disciplines on CoV drug and target discovery to model protein networks against a library of compounds. Furthermore, to demonstrate the special advantages of CADD methods in rapidly finding a drug for this deadly virus, numerous examples of the recent achievements grounded on molecular docking, chemogenomics, and DR are reported, analyzed, and interpreted in detail. It is believed that the outcome of this review assists developers of energy harvesting materials and systems for detection of future unexpected kinds of CoVs or other variants.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , Computadores , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Humanos , Simulación del Acoplamiento Molecular
6.
Biomolecules ; 11(11)2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34827712

RESUMEN

Metal-organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin' nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical applications. In this context, the role of incorporating different forms of porphyrins, their relationship with the final surface morphology, and their drug/gene loading efficiency were investigated to provide a predictable pattern in regard to the previous works. The conceptual phenomenon was optimized to increase the interactions between the biomolecules and the substrate by reaching the limit of detection to 10 pM for the Anti-cas9 protein, 20 pM for the single-stranded DNA (ssDNA), below 10 pM for the single guide RNA (sgRNA) and also around 10 nM for recombinant SARS-CoV-2 spike antigen. Also, the MTT assay showed acceptable relative cell viability of more than 85% in most cases, even by increasing the dose of the prepared nanostructures.


Asunto(s)
COVID-19/diagnóstico , Estructuras Metalorgánicas/química , Porfirinas/química , Animales , Prueba de COVID-19 , Sistemas CRISPR-Cas , ADN de Cadena Simple , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Enlace de Hidrógeno , Límite de Detección , Nanocompuestos , Nanoestructuras , Nitrógeno/química , Células PC12 , Porosidad , ARN Guía de Kinetoplastida , ARN Viral/metabolismo , Ratas , SARS-CoV-2 , Sensibilidad y Especificidad , Propiedades de Superficie
7.
Int J Nanomedicine ; 15: 4363-4392, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32606683

RESUMEN

With continual rapid developments in the biomedical field and understanding of the important mechanisms and pharmacokinetics of biological molecules, controlled drug delivery systems (CDDSs) have been at the forefront over conventional drug delivery systems. Over the past several years, scientists have placed boundless energy and time into exploiting a wide variety of excipients, particularly diverse polymers, both natural and synthetic. More recently, the development of nano polymer blends has achieved noteworthy attention due to their amazing properties, such as biocompatibility, biodegradability and more importantly, their pivotal role in controlled and sustained drug release in vitro and in vivo. These compounds come with a number of effective benefits for improving problems of targeted or controlled drug and gene delivery systems; thus, they have been extensively used in medical and pharmaceutical applications. Additionally, they are quite attractive for wound dressings, textiles, tissue engineering, and biomedical prostheses. In this sense, some important and workable natural polymers (namely, chitosan (CS), starch and cellulose) and some applicable synthetic ones (such as poly-lactic-co-glycolic acid (PLGA), poly(lactic acid) (PLA) and poly-glycolic acid (PGA)) have played an indispensable role over the last two decades for their therapeutic effects owing to their appealing and renewable biological properties. According to our data, this is the first review article highlighting CDDSs composed of diverse natural and synthetic nano biopolymers, blended for biological purposes, mostly over the past five years; other reviews have just briefly mentioned the use of such blended polymers. We, additionally, try to make comparisons between various nano blending systems in terms of improved sustained and controlled drug release behavior.


Asunto(s)
Preparaciones de Acción Retardada/farmacología , Nanopartículas/química , Polímeros/química , Sistemas de Liberación de Medicamentos , Hidrogeles/química
8.
J Chromatogr A ; 1141(1): 32-40, 2007 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-17196600

RESUMEN

An experimental design was used to determine optimal conditions for refolding of a recombinant thermostable and alkaline active xylanase from Bacillus halodurans in PEG-phosphate two-phase system. The influence of different experimental variables on the enzyme recovery has been evaluated. To build the mathematical model and minimize the number of experiments for the design parameters, response surface methodology with a face-centered central composite design (CCF) was defined based on the conditions found by preliminary tests that resulted in the highest refolding yield. The adequacy of the calculated model for the response was confirmed by means of variance analysis and additional experiments. Analysis of contours of constant response as a function of pH, polyethylene glycol (PEG) molecular weight and concentration, and salt concentration for different enzyme loads revealed different effects of these five factors on the studied parameters. Recovery of more than 92% active xylanase was predicted for a system with 18.3% (w/w) PEG 1000, 14.4% (w/w) phosphate at pH 8.5, and enzyme load corresponding to a protein concentration of about 0.05 mg/g system. The yield of the refolded enzyme was found to be optimal at 22 degrees C. The validity of the response model was verified by a good agreement between predicted and experimental results.


Asunto(s)
Bacillus/enzimología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Fosfatos/metabolismo , Polietilenglicoles/metabolismo , Pliegue de Proteína , Análisis de Varianza , Activación Enzimática , Concentración de Iones de Hidrógeno , Modelos Biológicos , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análisis de Regresión
9.
Biotechnol Bioeng ; 95(4): 627-37, 2006 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-16615144

RESUMEN

An experimental design was used to optimize plasmid purification from an alkaline lysate of Escherichia coli cells using PEG-sodium citrate aqueous two-phase systems (ATPS), and to evaluate the influence of pH, PEG molecular weight, tie line length, phase volume ratio, and lysate load. To build the mathematical model and minimize the number of experiments for the design parameters, response surface methodology (RMS) with an orthogonal rotatable central composite design was defined based on the conditions found for the highest purification by preliminary tests. The adequacy of the calculated models for the plasmid recovery and remaining RNA were confirmed by means of variance analysis and additional experiments. Analysis of contours of constant response as a function of pH, PEG molecular weight, tie line length, and cell lysate load for three different phase volume ratios revealed different effects of these five factors on the studied parameters. Plasmid recovery of 99% was predicted for a system with PEG 400, pH 6.9, tie line length of 38.7%, phase volume ratio of 1.5, and lysate load of 10% (v/v). Under these conditions the predicted RNA removal was 68%.


Asunto(s)
ADN/aislamiento & purificación , Escherichia coli/genética , Microbiología Industrial , Plásmidos/genética , Citratos , Microbiología Industrial/métodos , Modelos Teóricos , Peso Molecular , Plásmidos/aislamiento & purificación , Polietilenglicoles , Citrato de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA