Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(6): 1552-1552.e1, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29856960

RESUMEN

Post-translational modification of tubulin offers a mechanism for functional diversification of microtubules and regulation in a variety of physiological contexts. This SnapShot recaps the current state of understanding of tubulin posttranslational modifications and their functions in the regulation of biological processes. To view this SnapShot, open or download the PDF.


Asunto(s)
Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/química , Animales , Humanos , Microtúbulos/química , Modelos Biológicos , Neuronas/metabolismo
2.
Cell ; 173(6): 1323-1327, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29856952

RESUMEN

Tubulin posttranslational modifications are currently emerging as important regulators of the microtubule cytoskeleton and thus have a strong potential to be implicated in a number of disorders. Here, we review the latest advances in understanding the physiological roles of tubulin modifications and their links to a variety of pathologies.


Asunto(s)
Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/química , Animales , Plaquetas/metabolismo , Cilios/metabolismo , Citoesqueleto/metabolismo , Flagelos/metabolismo , Cardiopatías/metabolismo , Humanos , Ratones , Microtúbulos/metabolismo , Mutación , Enfermedades Neurodegenerativas/terapia , Fenotipo , Factores de Riesgo , Tubulina (Proteína)/fisiología
3.
Cell ; 172(5): 1063-1078.e19, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474907

RESUMEN

Interneurons navigate along multiple tangential paths to settle into appropriate cortical layers. They undergo a saltatory migration paced by intermittent nuclear jumps whose regulation relies on interplay between extracellular cues and genetic-encoded information. It remains unclear how cycles of pause and movement are coordinated at the molecular level. Post-translational modification of proteins contributes to cell migration regulation. The present study uncovers that carboxypeptidase 1, which promotes post-translational protein deglutamylation, controls the pausing of migrating cortical interneurons. Moreover, we demonstrate that pausing during migration attenuates movement simultaneity at the population level, thereby controlling the flow of interneurons invading the cortex. Interfering with the regulation of pausing not only affects the size of the cortical interneuron cohort but also impairs the generation of age-matched projection neurons of the upper layers.


Asunto(s)
Movimiento Celular , Corteza Cerebral/citología , Interneuronas/citología , Morfogénesis , Actomiosina/metabolismo , Animales , Carboxipeptidasas/metabolismo , Ciclo Celular , Factores Quimiotácticos/metabolismo , Embrión de Mamíferos/citología , Femenino , Eliminación de Gen , Interneuronas/metabolismo , Ratones , Ratones Noqueados , Quinasa de Cadena Ligera de Miosina/metabolismo , Neurogénesis , Fenotipo
4.
Nat Rev Mol Cell Biol ; 21(6): 307-326, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32107477

RESUMEN

Microtubules are core components of the eukaryotic cytoskeleton with essential roles in cell division, shaping, motility and intracellular transport. Despite their functional heterogeneity, microtubules have a highly conserved structure made from almost identical molecular building blocks: the tubulin proteins. Alternative tubulin isotypes and a variety of post-translational modifications control the properties and functions of the microtubule cytoskeleton, a concept known as the 'tubulin code'. Here we review the current understanding of the molecular components of the tubulin code and how they impact microtubule properties and functions. We discuss how tubulin isotypes and post-translational modifications control microtubule behaviour at the molecular level and how this translates into physiological functions at the cellular and organism levels. We then go on to show how fine-tuning of microtubule function by some tubulin modifications can affect homeostasis and how perturbation of this fine-tuning can lead to a range of dysfunctions, many of which are linked to human disease.


Asunto(s)
Microtúbulos/metabolismo , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Animales , División Celular , Movimiento Celular , Citoesqueleto/química , Citoesqueleto/metabolismo , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/química , Isoformas de Proteínas , Tubulina (Proteína)/química
5.
EMBO J ; 42(5): e112101, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36636822

RESUMEN

Tubulin posttranslational modifications have been predicted to control cytoskeletal functions by coordinating the molecular interactions between microtubules and their associating proteins. A prominent tubulin modification in neurons is polyglutamylation, the deregulation of which causes neurodegeneration. Yet, the underlying molecular mechanisms have remained elusive. Here, using in-vitro reconstitution, we determine how polyglutamylation generated by the two predominant neuronal polyglutamylases, TTLL1 and TTLL7, specifically modulates the activities of three major microtubule interactors: the microtubule-associated protein Tau, the microtubule-severing enzyme katanin and the molecular motor kinesin-1. We demonstrate that the unique modification patterns generated by TTLL1 and TTLL7 differentially impact those three effector proteins, thus allowing for their selective regulation. Given that our experiments were performed with brain tubulin from mouse models in which physiological levels and patterns of polyglutamylation were altered by the genetic knockout of the main modifying enzymes, our quantitative measurements provide direct mechanistic insight into how polyglutamylation could selectively control microtubule interactions in neurons.


Asunto(s)
Tubulina (Proteína) , Animales , Ratones , Citoesqueleto/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Péptido Sintasas , Proteínas Asociadas a Microtúbulos
6.
EMBO J ; 40(17): e108498, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34309047

RESUMEN

Tubulin polyglutamylation is a post-translational modification of the microtubule cytoskeleton, which is generated by a variety of enzymes with different specificities. The "tubulin code" hypothesis predicts that modifications generated by specific enzymes selectively control microtubule functions. Our recent finding that excessive accumulation of polyglutamylation in neurons causes their degeneration and perturbs axonal transport provides an opportunity for testing this hypothesis. By developing novel mouse models and a new glutamylation-specific antibody, we demonstrate here that the glutamylases TTLL1 and TTLL7 generate unique and distinct glutamylation patterns on neuronal microtubules. We find that under physiological conditions, TTLL1 polyglutamylates α-tubulin, while TTLL7 modifies ß-tubulin. TTLL1, but not TTLL7, catalyses the excessive hyperglutamylation found in mice lacking the deglutamylase CCP1. Consequently, deletion of TTLL1, but not of TTLL7, prevents degeneration of Purkinje cells and of myelinated axons in peripheral nerves in these mice. Moreover, loss of TTLL1 leads to increased mitochondria motility in neurons, while loss of TTLL7 has no such effect. By revealing how specific patterns of tubulin glutamylation, generated by distinct enzymes, translate into specific physiological and pathological readouts, we demonstrate the relevance of the tubulin code for homeostasis.


Asunto(s)
Transporte Axonal , Enfermedades Neurodegenerativas/metabolismo , Péptido Sintasas/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Péptido Sintasas/genética , Ácido Poliglutámico/metabolismo , Células de Purkinje/metabolismo
7.
Cell ; 143(4): 564-78, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21074048

RESUMEN

Polyglutamylation is a posttranslational modification that generates glutamate side chains on tubulins and other proteins. Although this modification has been shown to be reversible, little is known about the enzymes catalyzing deglutamylation. Here we describe the enzymatic mechanism of protein deglutamylation by members of the cytosolic carboxypeptidase (CCP) family. Three enzymes (CCP1, CCP4, and CCP6) catalyze the shortening of polyglutamate chains and a fourth (CCP5) specifically removes the branching point glutamates. In addition, CCP1, CCP4, and CCP6 also remove gene-encoded glutamates from the carboxyl termini of proteins. Accordingly, we show that these enzymes convert detyrosinated tubulin into Δ2-tubulin and also modify other substrates, including myosin light chain kinase 1. We further analyze Purkinje cell degeneration (pcd) mice that lack functional CCP1 and show that microtubule hyperglutamylation is directly linked to neurodegeneration. Taken together, our results reveal that controlling the length of the polyglutamate side chains on tubulin is critical for neuronal survival.


Asunto(s)
Carboxipeptidasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Degeneración Nerviosa/metabolismo , Ácido Poliglutámico/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Supervivencia Celular , Cerebelo/patología , Humanos , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Bulbo Olfatorio/patología , Alineación de Secuencia , Tubulina (Proteína)/metabolismo
8.
EMBO J ; 37(23)2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30420556

RESUMEN

Posttranslational modifications of tubulin are emerging regulators of microtubule functions. We have shown earlier that upregulated polyglutamylation is linked to rapid degeneration of Purkinje cells in mice with a mutation in the deglutamylating enzyme CCP1. How polyglutamylation leads to degeneration, whether it affects multiple neuron types, or which physiological processes it regulates in healthy neurons has remained unknown. Here, we demonstrate that excessive polyglutamylation induces neurodegeneration in a cell-autonomous manner and can occur in many parts of the central nervous system. Degeneration of selected neurons in CCP1-deficient mice can be fully rescued by simultaneous knockout of the counteracting polyglutamylase TTLL1. Excessive polyglutamylation reduces the efficiency of neuronal transport in cultured hippocampal neurons, suggesting that impaired cargo transport plays an important role in the observed degenerative phenotypes. We thus establish polyglutamylation as a cell-autonomous mechanism for neurodegeneration that might be therapeutically accessible through manipulation of the enzymes that control this posttranslational modification.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Células de Purkinje/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Transporte Biológico Activo/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Péptidos/genética , Células de Purkinje/patología , Tubulina (Proteína)/genética
9.
EMBO J ; 37(23)2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30420557

RESUMEN

A set of glutamylases and deglutamylases controls levels of tubulin polyglutamylation, a prominent post-translational modification of neuronal microtubules. Defective tubulin polyglutamylation was first linked to neurodegeneration in the Purkinje cell degeneration (pcd) mouse, which lacks deglutamylase CCP1, displays massive cerebellar atrophy, and accumulates abnormally glutamylated tubulin in degenerating neurons. We found biallelic rare and damaging variants in the gene encoding CCP1 in 13 individuals with infantile-onset neurodegeneration and confirmed the absence of functional CCP1 along with dysregulated tubulin polyglutamylation. The human disease mainly affected the cerebellum, spinal motor neurons, and peripheral nerves. We also demonstrate previously unrecognized peripheral nerve and spinal motor neuron degeneration in pcd mice, which thus recapitulated key features of the human disease. Our findings link human neurodegeneration to tubulin polyglutamylation, entailing this post-translational modification as a potential target for drug development for neurodegenerative disorders.


Asunto(s)
Carboxipeptidasas/deficiencia , Cerebelo/enzimología , Neuronas Motoras/enzimología , Nervios Periféricos/enzimología , Células de Purkinje/enzimología , Columna Vertebral/enzimología , Degeneraciones Espinocerebelosas/enzimología , Cerebelo/patología , Femenino , Proteínas de Unión al GTP , Humanos , Masculino , Neuronas Motoras/patología , Péptidos/genética , Péptidos/metabolismo , Nervios Periféricos/patología , Procesamiento Proteico-Postraduccional , Células de Purkinje/patología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina , Columna Vertebral/patología , Degeneraciones Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/patología
10.
J Cell Sci ; 133(3)2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-31932508

RESUMEN

Neurons are highly complex cells that heavily rely on intracellular transport to distribute a range of functionally essential cargoes within the cell. Post-translational modifications of tubulin are emerging as mechanisms for regulating microtubule functions, but their impact on neuronal transport is only marginally understood. Here, we have systematically studied the impact of post-translational polyglutamylation on axonal transport. In cultured hippocampal neurons, deletion of a single deglutamylase, CCP1 (also known as AGTPBP1), is sufficient to induce abnormal accumulation of polyglutamylation, i.e. hyperglutamylation. We next investigated how hyperglutamylation affects axonal transport of a range of functionally different neuronal cargoes: mitochondria, lysosomes, LAMP1 endosomes and BDNF vesicles. Strikingly, we found a reduced motility for all these cargoes, suggesting that polyglutamylation could act as a regulator of cargo transport in neurons. This, together with the recent discovery that hyperglutamylation induces neurodegeneration, makes it likely that perturbed neuronal trafficking could be one of the central molecular causes underlying this novel type of degeneration.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Neuronas , Tubulina (Proteína) , Transporte Axonal , Hipocampo/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/metabolismo
13.
EMBO Rep ; 18(6): 1013-1026, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28483842

RESUMEN

Posttranslational modifications of tubulin currently emerge as key regulators of microtubule functions. Polyglutamylation generates a variety of modification patterns that are essential for controlling microtubule functions in different cell types and organelles, and deregulation of these patterns has been linked to ciliopathies, cancer and neurodegeneration. How the different glutamylating enzymes determine precise modification patterns has so far remained elusive. Using computational modelling, molecular dynamics simulations and mutational analyses we now show how the carboxy-terminal tails of tubulin bind into the active sites of glutamylases. Our models suggest that the glutamylation sites on α- and ß-tubulins are determined by the positioning of the tails within the catalytic pocket. Moreover, we found that the binding modes of α- and ß-tubulin tails are highly similar, implying that most enzymes could potentially modify both, α- and ß-tubulin. This supports a model in which the binding of the enzymes to the entire microtubule lattice, but not the specificity of the C-terminal tubulin tails to their active sites, determines the catalytic specificities of glutamylases.


Asunto(s)
Péptido Sintasas/metabolismo , Procesamiento Proteico-Postraduccional , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Biocatálisis , Análisis Mutacional de ADN , Humanos , Microtúbulos/genética , Microtúbulos/fisiología , Simulación de Dinámica Molecular , Péptido Sintasas/genética , Unión Proteica , Tubulina (Proteína)/genética
14.
Dev Cell ; 59(2): 199-210.e11, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38159567

RESUMEN

Microtubule doublets (MTDs) comprise an incomplete microtubule (B-tubule) attached to the side of a complete cylindrical microtubule. These compound microtubules are conserved in cilia across the tree of life; however, the mechanisms by which MTDs form and are maintained in vivo remain poorly understood. Here, we identify microtubule-associated protein 9 (MAP9) as an MTD-associated protein. We demonstrate that C. elegans MAPH-9, a MAP9 homolog, is present during MTD assembly and localizes exclusively to MTDs, a preference that is in part mediated by tubulin polyglutamylation. We find that loss of MAPH-9 causes ultrastructural MTD defects, including shortened and/or squashed B-tubules with reduced numbers of protofilaments, dysregulated axonemal motor velocity, and perturbed cilia function. Because we find that the mammalian ortholog MAP9 localizes to axonemes in cultured mammalian cells and mouse tissues, we propose that MAP9/MAPH-9 plays a conserved role in regulating ciliary motors and supporting the structure of axonemal MTDs.


Asunto(s)
Axonema , Caenorhabditis elegans , Animales , Ratones , Axonema/metabolismo , Axonema/ultraestructura , Caenorhabditis elegans/metabolismo , Cilios/metabolismo , Mamíferos , Microtúbulos/metabolismo , Movimiento , Tubulina (Proteína)/metabolismo
15.
Dev Cell ; 58(23): 2641-2651.e6, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37890489

RESUMEN

Choroid plexuses (ChPs) produce cerebrospinal fluid and sense non-cell-autonomous stimuli to control the homeostasis of the central nervous system. They are mainly composed of epithelial multiciliated cells, whose development and function are still controversial. We have thus characterized the stepwise order of mammalian ChP epithelia cilia formation using a combination of super-resolution-microscopy approaches and mouse genetics. We show that ChP ciliated cells are built embryonically on a treadmill of spatiotemporally regulated events, starting with atypical centriole amplification and ending with the construction of nodal-like 9+0 cilia, characterized by both primary and motile features. ChP cilia undergo axoneme resorption at early postnatal stages through a microtubule destabilization process controlled by the microtubule-severing enzyme spastin and mitigated by polyglutamylation levels. Notably, this phenotype is preserved in humans, suggesting a conserved ciliary resorption mechanism in mammals.


Asunto(s)
Axonema , Cilios , Humanos , Ratones , Animales , Cilios/fisiología , Células Epiteliales/fisiología , Epitelio , Coroides , Mamíferos
16.
J Cell Biol ; 222(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36512346

RESUMEN

The detyrosination/tyrosination cycle of α-tubulin is critical for proper cell functioning. VASH1-SVBP and VASH2-SVBP are ubiquitous enzymes involved in microtubule detyrosination, whose mode of action is little known. Here, we show in reconstituted systems and cells that VASH1-SVBP and VASH2-SVBP drive the global and local detyrosination of microtubules, respectively. We solved the cryo-electron microscopy structure of VASH2-SVBP bound to microtubules, revealing a different microtubule-binding configuration of its central catalytic region compared to VASH1-SVBP. We show that the divergent mode of detyrosination between the two enzymes is correlated with the microtubule-binding properties of their disordered N- and C-terminal regions. Specifically, the N-terminal region is responsible for a significantly longer residence time of VASH2-SVBP on microtubules compared to VASH1-SVBP. We suggest that this VASH region is critical for microtubule detachment and diffusion of VASH-SVBP enzymes on lattices. Our results suggest a mechanism by which VASH1-SVBP and VASH2-SVBP could generate distinct microtubule subpopulations and confined areas of detyrosinated lattices to drive various microtubule-based cellular functions.


Asunto(s)
Proteínas Angiogénicas , Proteínas Portadoras , Proteínas de Ciclo Celular , Microtúbulos , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Proteínas Angiogénicas/metabolismo
17.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865107

RESUMEN

Microtubule doublets (MTDs) are a well conserved compound microtubule structure found primarily in cilia. However, the mechanisms by which MTDs form and are maintained in vivo remain poorly understood. Here, we characterize microtubule-associated protein 9 (MAP9) as a novel MTD-associated protein. We demonstrate that C. elegans MAPH-9, a MAP9 homolog, is present during MTD assembly and localizes exclusively to MTDs, a preference that is in part mediated by tubulin polyglutamylation. Loss of MAPH-9 caused ultrastructural MTD defects, dysregulated axonemal motor velocity, and perturbed cilia function. As we found that the mammalian ortholog MAP9 localized to axonemes in cultured mammalian cells and mouse tissues, we propose that MAP9/MAPH-9 plays a conserved role in supporting the structure of axonemal MTDs and regulating ciliary motors.

18.
Proc Natl Acad Sci U S A ; 106(21): 8731-6, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19439658

RESUMEN

Synaptic plasticity, the ability of synapses to change in strength, requires alterations in synaptic molecule compositions over time, and synapses undergo selective modifications on stimulation. Molecular motors operate in sorting/transport of neuronal proteins; however, the targeting mechanisms that guide and direct cargo delivery remain elusive. We addressed the impact of synaptic transmission on the regulation of intracellular microtubule (MT)-based transport. We show that increased neuronal activity, as induced through GlyR activity blockade, facilitates tubulin polyglutamylation, a posttranslational modification thought to represent a molecular traffic sign for transport. Also, GlyR activity blockade alters the binding of the MT-associated protein MAP2 to MTs. By using the kinesin (KIF5) and the postsynaptic protein gephyrin as models, we show that such changes of MT tracks are accompanied by reduced motor protein mobility and cargo delivery into neurites. Notably, the observed neurite targeting deficits are prevented on functional depletion or gene expression knockdown of neuronal polyglutamylase. Our data suggest a previously undescribed concept of synaptic transmission regulating MT-dependent cargo delivery.


Asunto(s)
Microtúbulos/metabolismo , Sinapsis/metabolismo , Transporte Biológico , Proteínas Portadoras/metabolismo , Células Cultivadas , Cinesinas/metabolismo , Proteínas de la Membrana/metabolismo , Ácido Poliglutámico/metabolismo , Tubulina (Proteína)/metabolismo
19.
Nat Cell Biol ; 24(2): 253-267, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35102268

RESUMEN

The microtubule cytoskeleton forms complex macromolecular assemblies with a range of microtubule-associated proteins (MAPs) that have fundamental roles in cell architecture, division and motility. Determining how an individual MAP modulates microtubule behaviour is an important step in understanding the physiological roles of various microtubule assemblies. To characterize how MAPs control microtubule properties and functions, we developed an approach allowing for medium-throughput analyses of MAPs in cell-free conditions using lysates of mammalian cells. Our pipeline allows for quantitative as well as ultrastructural analyses of microtubule-MAP assemblies. Analysing 45 bona fide and potential mammalian MAPs, we uncovered previously unknown activities that lead to distinct and unique microtubule behaviours such as microtubule coiling or hook formation, or liquid-liquid phase separation along the microtubule lattice that initiates microtubule branching. We have thus established a powerful tool for a thorough characterization of a wide range of MAPs and MAP variants, thus opening avenues for the determination of mechanisms underlying their physiological roles and pathological implications.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Imagen Individual de Molécula , Fracciones Subcelulares , Animales , Línea Celular Tumoral , Microscopía por Crioelectrón , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Microscopía por Video , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/genética , Microtúbulos/ultraestructura , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/ultraestructura , Transducción de Señal , Factores de Tiempo , Imagen de Lapso de Tiempo , Tubulina (Proteína)/metabolismo
20.
Nat Commun ; 13(1): 7886, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550158

RESUMEN

Mutations in the lamin A/C gene (LMNA) cause dilated cardiomyopathy associated with increased activity of ERK1/2 in the heart. We recently showed that ERK1/2 phosphorylates cofilin-1 on threonine 25 (phospho(T25)-cofilin-1) that in turn disassembles the actin cytoskeleton. Here, we show that in muscle cells carrying a cardiomyopathy-causing LMNA mutation, phospho(T25)-cofilin-1 binds to myocardin-related transcription factor A (MRTF-A) in the cytoplasm, thus preventing the stimulation of serum response factor (SRF) in the nucleus. Inhibiting the MRTF-A/SRF axis leads to decreased α-tubulin acetylation by reducing the expression of ATAT1 gene encoding α-tubulin acetyltransferase 1. Hence, tubulin acetylation is decreased in cardiomyocytes derived from male patients with LMNA mutations and in heart and isolated cardiomyocytes from Lmnap.H222P/H222P male mice. In Atat1 knockout mice, deficient for acetylated α-tubulin, we observe left ventricular dilation and mislocalization of Connexin 43 (Cx43) in heart. Increasing α-tubulin acetylation levels in Lmnap.H222P/H222P mice with tubastatin A treatment restores the proper localization of Cx43 and improves cardiac function. In summary, we show for the first time an actin-microtubule cytoskeletal interplay mediated by cofilin-1 and MRTF-A/SRF, promoting the dilated cardiomyopathy caused by LMNA mutations. Our findings suggest that modulating α-tubulin acetylation levels is a feasible strategy for improving cardiac function.


Asunto(s)
Cardiomiopatía Dilatada , Masculino , Ratones , Animales , Cardiomiopatía Dilatada/metabolismo , Actinas/metabolismo , Conexina 43/genética , Tubulina (Proteína)/genética , Factor de Respuesta Sérica/genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Ratones Noqueados , Proteínas de Filamentos Intermediarios/genética , Mutación , Factores Despolimerizantes de la Actina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA