Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 165(7): 1749-1761, 2016 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-27315482

RESUMEN

Neurons are well suited for computations on millisecond timescales, but some neuronal circuits set behavioral states over long time periods, such as those involved in energy homeostasis. We found that multiple types of hypothalamic neurons, including those that oppositely regulate body weight, are specialized as near-perfect synaptic integrators that summate inputs over extended timescales. Excitatory postsynaptic potentials (EPSPs) are greatly prolonged, outlasting the neuronal membrane time-constant up to 10-fold. This is due to the voltage-gated sodium channel Nav1.7 (Scn9a), previously associated with pain-sensation but not synaptic integration. Scn9a deletion in AGRP, POMC, or paraventricular hypothalamic neurons reduced EPSP duration, synaptic integration, and altered body weight in mice. In vivo whole-cell recordings in the hypothalamus confirmed near-perfect synaptic integration. These experiments show that integration of synaptic inputs over time by Nav1.7 is critical for body weight regulation and reveal a mechanism for synaptic control of circuits regulating long term homeostatic functions.


Asunto(s)
Mantenimiento del Peso Corporal , Hipotálamo/citología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuronas/metabolismo , Sinapsis , Proteína Relacionada con Agouti/metabolismo , Animales , Homeostasis , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Transgénicos
2.
Nature ; 521(7551): 180-185, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25915020

RESUMEN

Homeostasis is a biological principle for regulation of essential physiological parameters within a set range. Behavioural responses due to deviation from homeostasis are critical for survival, but motivational processes engaged by physiological need states are incompletely understood. We examined motivational characteristics of two separate neuron populations that regulate energy and fluid homeostasis by using cell-type-specific activity manipulations in mice. We found that starvation-sensitive AGRP neurons exhibit properties consistent with a negative-valence teaching signal. Mice avoided activation of AGRP neurons, indicating that AGRP neuron activity has negative valence. AGRP neuron inhibition conditioned preference for flavours and places. Correspondingly, deep-brain calcium imaging revealed that AGRP neuron activity rapidly reduced in response to food-related cues. Complementary experiments activating thirst-promoting neurons also conditioned avoidance. Therefore, these need-sensing neurons condition preference for environmental cues associated with nutrient or water ingestion, which is learned through reduction of negative-valence signals during restoration of homeostasis.


Asunto(s)
Ingestión de Líquidos/fisiología , Ingestión de Alimentos/fisiología , Hambre/fisiología , Neuronas/metabolismo , Sed/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Señales (Psicología) , Deshidratación , Alimentos , Preferencias Alimentarias , Homeostasis , Hipotálamo/metabolismo , Masculino , Ratones , Modelos Animales , Inanición
3.
Science ; 364(6436)2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30872534

RESUMEN

Chemogenetics enables noninvasive chemical control over cell populations in behaving animals. However, existing small-molecule agonists show insufficient potency or selectivity. There is also a need for chemogenetic systems compatible with both research and human therapeutic applications. We developed a new ion channel-based platform for cell activation and silencing that is controlled by low doses of the smoking cessation drug varenicline. We then synthesized subnanomolar-potency agonists, called uPSEMs, with high selectivity for the chemogenetic receptors. uPSEMs and their receptors were characterized in brains of mice and a rhesus monkey by in vivo electrophysiology, calcium imaging, positron emission tomography, behavioral efficacy testing, and receptor counterscreening. This platform of receptors and selective ultrapotent agonists enables potential research and clinical applications of chemogenetics.


Asunto(s)
Células Quimiorreceptoras/efectos de los fármacos , Antagonistas Nicotínicos/farmacología , Agentes para el Cese del Hábito de Fumar/farmacología , Vareniclina/análogos & derivados , Vareniclina/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Animales , Células Quimiorreceptoras/fisiología , Ingeniería Genética , Haplorrinos , Humanos , Ligandos , Ratones , Mutación , Dominios Proteicos , Receptores de Glicina/agonistas , Receptores de Glicina/genética , Receptores de Serotonina 5-HT3/genética , Tropisetrón/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/genética
4.
Science ; 333(6047): 1292-6, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21885782

RESUMEN

Ionic flux mediates essential physiological and behavioral functions in defined cell populations. Cell type-specific activators of diverse ionic conductances are needed for probing these effects. We combined chemistry and protein engineering to enable the systematic creation of a toolbox of ligand-gated ion channels (LGICs) with orthogonal pharmacologic selectivity and divergent functional properties. The LGICs and their small-molecule effectors were able to activate a range of ionic conductances in genetically specified cell types. LGICs constructed for neuronal perturbation could be used to selectively manipulate neuron activity in mammalian brains in vivo. The diversity of ion channel tools accessible from this approach will be useful for examining the relationship between neuronal activity and animal behavior, as well as for cell biological and physiological applications requiring chemical control of ion conductance.


Asunto(s)
Canales Iónicos Activados por Ligandos/genética , Canales Iónicos Activados por Ligandos/metabolismo , Neuronas/fisiología , Ingeniería de Proteínas , Animales , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacología , Encéfalo/citología , Encéfalo/fisiología , Compuestos Bicíclicos con Puentes/química , Compuestos Bicíclicos con Puentes/metabolismo , Compuestos Bicíclicos con Puentes/farmacología , Conducta Alimentaria , Femenino , Células HEK293 , Humanos , Activación del Canal Iónico , Canales Iónicos Activados por Ligandos/química , Ligandos , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Mutagénesis , Técnicas de Placa-Clamp , Unión Proteica , Estructura Terciaria de Proteína , Quinuclidinas/química , Quinuclidinas/metabolismo , Quinuclidinas/farmacología , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Bibliotecas de Moléculas Pequeñas , Estereoisomerismo , Receptor Nicotínico de Acetilcolina alfa 7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA