Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Sci ; 132(12)2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31164446

RESUMEN

The Par polarity complex, consisting of Par3, Par6 and atypical protein kinase C (aPKC), plays a crucial role in the establishment and maintenance of cell polarity. Although activation of aPKC is critical for polarity, how this is achieved is unclear. The developing zebrafish epidermis, along with its apical actin-based projections, called microridges, offers a genetically tractable system for unraveling the mechanisms of the cell polarity control. The zebrafish aPKC regulates elongation of microridges by controlling levels of apical Lgl, which acts as a pro-elongation factor. Here, we show that the nucleoporin Nup358 (also known as RanBP2) - a component of the nuclear pore complex and a part of cytoplasmic annulate lamellae (AL) - SUMOylates zebrafish aPKC. Nup358-mediated SUMOylation controls aPKC activity to regulate Lgl-dependent microridge elongation. Our data further suggest that cytoplasmic AL structures are the possible site for Nup358-mediated aPKC SUMOylation. We have unraveled a hitherto unappreciated contribution of Nup358-mediated aPKC SUMOylation in cell polarity regulation.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Polaridad Celular/fisiología , Células Epidérmicas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Pez Cebra/metabolismo , Actinas/metabolismo , Animales , Epidermis/metabolismo , Células Epiteliales/metabolismo , Chaperonas Moleculares/genética , Proteínas de Complejo Poro Nuclear/genética , Pez Cebra/embriología , Pez Cebra/genética
2.
EMBO Rep ; 18(2): 241-263, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28039207

RESUMEN

MicroRNA (miRNA)-guided mRNA repression, mediated by the miRNA-induced silencing complex (miRISC), is an important component of post-transcriptional gene silencing. However, how miRISC identifies the target mRNA in vivo is not well understood. Here, we show that the nucleoporin Nup358 plays an important role in this process. Nup358 localizes to the nuclear pore complex and to the cytoplasmic annulate lamellae (AL), and these structures dynamically associate with two mRNP granules: processing bodies (P bodies) and stress granules (SGs). Nup358 depletion disrupts P bodies and concomitantly impairs the miRNA pathway. Furthermore, Nup358 interacts with AGO and GW182 proteins and promotes the association of target mRNA with miRISC A well-characterized SUMO-interacting motif (SIM) in Nup358 is sufficient for Nup358 to directly bind to AGO proteins. Moreover, AGO and PIWI proteins interact with SIMs derived from other SUMO-binding proteins. Our study indicates that Nup358-AGO interaction is important for miRNA-mediated gene silencing and identifies SIM as a new interacting motif for the AGO family of proteins. The findings also support a model wherein the coupling of miRISC with the target mRNA could occur at AL, specialized domains within the ER, and at the nuclear envelope.


Asunto(s)
Proteínas Argonautas/metabolismo , MicroARNs/genética , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/genética , Complejo Silenciador Inducido por ARN/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Argonautas/química , Línea Celular , Silenciador del Gen , Humanos , Cuerpos de Inclusión Intranucleares/metabolismo , MicroARNs/metabolismo , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Proteínas de Complejo Poro Nuclear/química , Unión Proteica , Conformación Proteica , Interferencia de ARN , ARN Mensajero/metabolismo , Transducción de Señal , Dedos de Zinc
3.
Dev Cell ; 59(14): 1860-1875.e5, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38697108

RESUMEN

In bony fishes, patterning of the vertebral column, or spine, is guided by a metameric blueprint established in the notochord sheath. Notochord segmentation begins days after somitogenesis concludes and can occur in its absence. However, somite patterning defects lead to imprecise notochord segmentation, suggesting that these processes are linked. Here, we identify that interactions between the notochord and the axial musculature ensure precise spatiotemporal segmentation of the zebrafish spine. We demonstrate that myoseptum-notochord linkages drive notochord segment initiation by locally deforming the notochord extracellular matrix and recruiting focal adhesion machinery at these contact points. Irregular somite patterning alters this mechanical signaling, causing non-sequential and dysmorphic notochord segmentation, leading to altered spine development. Using a model that captures myoseptum-notochord interactions, we find that a fixed spatial interval is critical for driving sequential segment initiation. Thus, mechanical coupling of axial tissues facilitates spatiotemporal spine patterning.


Asunto(s)
Tipificación del Cuerpo , Notocorda , Somitos , Columna Vertebral , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/embriología , Notocorda/embriología , Notocorda/metabolismo , Somitos/embriología , Somitos/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Columna Vertebral/embriología , Transducción de Señal , Regulación del Desarrollo de la Expresión Génica , Matriz Extracelular/metabolismo , Embrión no Mamífero/metabolismo
4.
Sci Rep ; 6: 34100, 2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-27682244

RESUMEN

Atypical PKC (aPKC) family members are involved in regulation of diverse cellular processes, including cell polarization. aPKCs are known to be activated by phosphorylation of specific threonine residues in the activation loop and turn motif. They can also be stimulated by interaction with Cdc42~GTP-Par6 complex. Here we report that PKCζ, a member of the aPKC family, is activated by SUMOylation. We show that aPKC is endogenously modified by SUMO1 and the nucleoporin Nup358 acts as its SUMO E3 ligase. Results from in vitro SUMOylation and kinase assays showed that the modification enhances the kinase activity of PKCζ by ~10-fold. By monitoring the phosphorylation of Lethal giant larvae (Lgl), a downstream target of aPKC, we confirmed these findings in vivo. Consistent with the function of Nup358 as a SUMO E3 ligase for aPKC, depletion of Nup358 attenuated the extent of SUMOylation and the activity of aPKC. Moreover, overexpression of the C-terminal fragment of Nup358 that possesses the E3 ligase activity enhanced SUMOylation of endogenous aPKC and its kinase activity. Collectively, our studies reveal a role for Nup358-dependent SUMOylation in the regulation of aPKC activity and provide a framework for understanding the role of Nup358 in cell polarity.

5.
PLoS One ; 10(4): e0125506, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25894517

RESUMEN

Ran, a member of the Ras-GTPase superfamily, has a well-established role in regulating the transport of macromolecules across the nuclear envelope (NE). Ran has also been implicated in mitosis, cell cycle progression, and NE formation. Over-expression of Ran is associated with various cancers, although the molecular mechanism underlying this phenomenon is unclear. Serendipitously, we found that Ran possesses the ability to move from cell-to-cell when transiently expressed in mammalian cells. Moreover, we show that the inter-cellular transport of Ran is GTP-dependent. Importantly, Ran displays a similar distribution pattern in the recipient cells as that in the donor cell and co-localizes with the Ran binding protein Nup358 (also called RanBP2). Interestingly, leptomycin B, an inhibitor of CRM1-mediated export, or siRNA mediated depletion of CRM1, significantly impaired the inter-cellular transport of Ran, suggesting a function for CRM1 in this process. These novel findings indicate a possible role for Ran beyond nucleo-cytoplasmic transport, with potential implications in inter-cellular communication and cancers.


Asunto(s)
Espacio Extracelular/metabolismo , Proteína de Unión al GTP ran/metabolismo , Animales , Línea Celular , Humanos , Carioferinas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína Exportina 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA