Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Mater ; 22(6): 746-753, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37081171

RESUMEN

Although organic mixed ionic-electronic conductors are widely proposed for use in bioelectronics, energy generation/storage and neuromorphic computing, our fundamental understanding of the charge-compensating interactions between the ionic and electronic carriers and the dynamics of ions remains poor, particularly for hydrated devices and on electrochemical cycling. Here we show that operando 23Na and 1H nuclear magnetic resonance (NMR) spectroscopy can quantify cation and water movement during the doping/dedoping of films comprising the widely used mixed conductor poly(3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT:PSS). A distinct 23Na quadrupolar splitting is observed due to the partial ordering of the PSS chains within the PEDOT:PSS-rich domains, with respect to the substrate. Operando 23Na NMR studies reveal a close-to-linear correlation between the quadrupolar splitting and the charge stored, which is quantitatively explained by a model in which the holes on the PEDOT backbone are bound to the PSS SO3- groups; an increase in hole concentration during doping inversely correlates with the number of Na+ ions bound to the PSS chains within the PEDOT-rich ordered domains, leading to a decrease in ions within the ordered regions and a decrease in quadrupolar splitting. The Na+-to-electron coupling efficiency, measured via 23Na NMR intensity changes, is close to 100% when using a 1 M NaCl electrolyte. Operando 1H NMR spectroscopy confirms that the Na+ ions injected into/extracted from the wet films are hydrated. These findings shed light on the working principles of organic mixed conductors and demonstrate the utility of operando NMR spectroscopy in revealing structure-property relationships in electroactive polymers.

2.
J Am Chem Soc ; 142(25): 11173-11182, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32459963

RESUMEN

Hydrous materials are ubiquitous in the natural environment and efforts have previously been made to investigate the structures and dynamics of hydrated surfaces for their key roles in various chemical and physical applications, with the help of theoretical modeling and microscopy techniques. However, an overall atomic-scale understanding of the water-solid interface, including the effect of water on surface ions, is still lacking. Herein, we employ ceria nanorods with different amounts of water as an example and demonstrate a new approach to explore the water-surface interactions by using solid-state NMR in combination with density functional theory. NMR shifts and relaxation time analysis provide detailed information on the local structure of oxygen ions and the nature of water motion on the surface: the amount of molecularly adsorbed water decreases rapidly with increasing temperature (from room temperature to 150 °C), whereas hydroxyl groups are stable up to 150 °C, and dynamic water molecules are found to instantaneously coordinate to the surface oxygen ions. The applicability of dynamic nuclear polarization for selective detection of surface oxygen species is also compared to conventional NMR with surface selective isotopic-labeling: the optimal method depends on the feasibility of enrichment and the concentration of protons in the sample. These results provide new insight into the interfacial structure of hydrated oxide nanostructures, which is important to improve performance for various applications.

3.
J Am Chem Soc ; 141(17): 7014-7027, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30964666

RESUMEN

Silicon monoxide is a promising alternative anode material due to its much higher capacity than graphite, and improved cyclability over other Si anodes. An in-depth analysis of the lithium silicide (Li xSi) phases that form during lithiation/delithiation of SiO is presented here and the results are compared with pure-Si anodes. A series of anode materials is first prepared by heating amorphous silicon monoxide (a-SiO) at different temperatures, X-ray diffraction and 29Si NMR analysis revealing that they comprise small Si domains that are surrounded by amorphous SiO2, the domain size and crystallinity growing with heat treatment. In and ex situ 7Li and 29Si solid-state NMR combined with detailed electrochemical analysis reveals that a characteristic metallic Li xSi phase is formed on lithiating a-SiO with a relatively high Li concentration of x = 3.4-3.5, which is formed/decomposed through a continuous structural evolution involving amorphous phases differing in their degree of Si-Si connectivity. This structural evolution differs from that of pure-Si electrodes where the end member, crystalline Li15Si4, is formed/decomposed through a two-phase reaction. The reaction pathway of SiO depends, however, on the size of the ordered Si domains within the pristine material. When crystalline domains of >3 nm within a SiO2 matrix are present, a phase resembling Li15Si4 forms, albeit at a higher overpotential. The continuous formation/decomposition of amorphous Li xSi phases without the hysteresis and phase change associated with the formation of c-Li15Si4, along with a partially electrochemically active SiO2/lithium silicate buffer layer, are paramount for the good cyclability of a-SiO.

4.
J Am Chem Soc ; 140(31): 9854-9867, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29979869

RESUMEN

Fluoroethylene carbonate (FEC) and vinylene carbonate (VC) are widely used as electrolyte additives in lithium ion batteries. Here we analyze the solid electrolyte interphase (SEI) formed on binder-free silicon nanowire (SiNW) electrodes in pure FEC or VC electrolytes containing 1 M LiPF6 by solid-state NMR with and without dynamic nuclear polarization (DNP) enhancement. We find that the polymeric SEIs formed in pure FEC or VC electrolytes consist mainly of cross-linked poly(ethylene oxide) (PEO) and aliphatic chain functionalities along with additional carbonate and carboxylate species. The formation of branched fragments is further confirmed by 13C-13C correlation NMR experiments. The presence of cross-linked PEO-type polymers in FEC and VC correlates with good capacity retention and high Coulombic efficiencies of the SiNWs. Using 29Si DNP NMR, we are able to probe the interfacial region between SEI and the Si surface for the first time with NMR spectroscopy. Organosiloxanes form upon cycling, confirming that some of the organic SEI is covalently bonded to the Si surface. We suggest that both the polymeric structure of the SEI and the nature of its adhesion to the redox-active materials are important for electrochemical performance.

5.
J Am Chem Soc ; 140(4): 1428-1437, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29345915

RESUMEN

The parasitic reactions associated with reduced oxygen species and the difficulty in achieving the high theoretical capacity have been major issues plaguing development of practical nonaqueous Li-O2 batteries. We hereby address the above issues by exploring the synergistic effect of 2,5-di-tert-butyl-1,4-benzoquinone and H2O on the oxygen chemistry in a nonaqueous Li-O2 battery. Water stabilizes the quinone monoanion and dianion, shifting the reduction potentials of the quinone and monoanion to more positive values (vs Li/Li+). When water and the quinone are used together in a (largely) nonaqueous Li-O2 battery, the cell discharge operates via a two-electron oxygen reduction reaction to form Li2O2, with the battery discharge voltage, rate, and capacity all being considerably increased and fewer side reactions being detected. Li2O2 crystals can grow up to 30 µm, more than an order of magnitude larger than cases with the quinone alone or without any additives, suggesting that water is essential to promoting a solution dominated process with the quinone on discharging. The catalytic reduction of O2 by the quinone monoanion is predominantly responsible for the attractive features mentioned above. Water stabilizes the quinone monoanion via hydrogen-bond formation and by coordination of the Li+ ions, and it also helps increase the solvation, concentration, lifetime, and diffusion length of reduced oxygen species that dictate the discharge voltage, rate, and capacity of the battery. When a redox mediator is also used to aid the charging process, a high-power, high energy density, rechargeable Li-O2 battery is obtained.

6.
J Am Chem Soc ; 139(42): 14992-15004, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-28933161

RESUMEN

To elucidate the role of fluoroethylene carbonate (FEC) as an additive in the standard carbonate-based electrolyte for Li-ion batteries, the solid electrolyte interphase (SEI) formed during electrochemical cycling on silicon anodes was analyzed with a combination of solution and solid-state NMR techniques, including dynamic nuclear polarization. To facilitate characterization via 1D and 2D NMR, we synthesized 13C-enriched FEC, ultimately allowing a detailed structural assignment of the organic SEI. We find that the soluble poly(ethylene oxide)-like linear oligomeric electrolyte breakdown products that are observed after cycling in the standard ethylene carbonate-based electrolyte are suppressed in the presence of 10 vol% FEC additive. FEC is first defluorinated to form soluble vinylene carbonate and vinoxyl species, which react to form both soluble and insoluble branched ethylene-oxide-based polymers. No evidence for branched polymers is observed in the absence of FEC.

7.
J Am Chem Soc ; 138(8): 2802-8, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26842944

RESUMEN

The reaction mechanism of etherification of ß-citronellene with ethanol in liquid phase over acid zeolite beta is revealed by in situ solid-state (13)C NMR spectroscopy. Comparison of (13)C Hahn-echo and (1)H-(13)C cross-polarization NMR characteristics is used to discriminate between molecules freely moving in liquid phase outside the zeolite and molecules adsorbed inside zeolite pores and in pore mouths. In the absence of ethanol, ß-citronellene molecules enter zeolite pores and react to isomers. In the presence of ethanol, the concentration of ß-citronellene inside zeolite pores is very low because of preferential adsorption of ethanol. The etherification reaction proceeds by adsorption of ß-citronellene molecule from the external liquid phase in a pore opening where it reacts with ethanol from inside the pore. By competitive adsorption, ethanol prevents the undesired side reaction of ß-citronellene isomerization inside zeolite pores. ß-citronellene etherification on zeolite beta is suppressed by bulky base molecules (2,4,6-collidine and 2,6-ditertiarybutylpyridine) that do not enter the zeolite pores confirming the involvement of easily accessible acid sites in pore openings. The use of in situ solid-state NMR to probe the transition from intracrystalline catalysis to pore mouth catalysis depending on reaction conditions is demonstrated for the first time. The study further highlights the potential of this NMR approach for investigations of adsorption of multicomponent mixtures in general.

8.
Angew Chem Int Ed Engl ; 55(3): 1075-9, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26629678

RESUMEN

The novel ternary Zintl phase Li3NaGe2 comprises alkali-metal cations and [Ge2](4-) dumbbells. The diatomic [Ge2](4-) unit is characterized by the shortest Ge-Ge distance (2.390(1) Å) ever observed in a Zintl phase and thus represents the first Ge=Ge double bond under such conditions, as also suggested by the (8-N) rule. Raman measurements support these findings. The multiple-bond character is confirmed by electronic-structure calculations, and an upfield (6)Li NMR shift of -10.0 ppm, which was assigned to the Li cations surrounded by the π systems of three Ge dumbbells, further underlines this interpretation. For the unperturbed, ligand-free dumbbell in Li3NaGe2, the π- bonding py and pz orbitals are degenerate as in molecular oxygen, which has singly occupied orbitals. The partially filled π-type bands of the neat solid Li3NaGe2 cross the Fermi level, resulting in metallic properties. Li3NaGe2 was synthesized from the elements as well as from binary reactants and subsequently characterized crystallographically.

9.
Nano Lett ; 14(3): 1433-8, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24499132

RESUMEN

Although monodisperse amorphous silica nanoparticles have been widely investigated, their formation mechanism is still a topic of debate. Here, we demonstrate the formation of monodisperse nanoparticles from colloidally stabilized primary particles, which at a critical concentration undergo a concerted association process, concomitant with a morphological and structural collapse. The formed assemblies grow further by addition of primary particles onto their surface. The presented mechanism, consistent with previously reported observations, reconciles the different theories proposed to date.

10.
Inorg Chem ; 53(2): 882-7, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24405155

RESUMEN

In situ NMR and DFT modeling demonstrate that N,N-dimethylformamide (DMF) promotes the formation of metal-organic framework NH2-MIL-101(Al). In situ NMR studies show that upon dissociation of an aluminum-coordinated aqua ligand in NH2-MOF-235(Al), DMF forms a H-Cl-DMF complex during synthesis. This reaction induces a transformation from the MOF-235 topology into the MIL-101 topology. Electronic structure density functional theory (DFT) calculations show that the use of DMF instead of water as the synthesis solvent decreases the energy gap between the kinetically favored MIL-101 and thermodynamically favored MIL-53 products. DMF therefore promotes MIL-101 topology both kinetically and thermodynamically.

11.
Chem Sci ; 14(5): 1155-1167, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36756318

RESUMEN

Understanding a material's electronic structure is crucial to the development of many functional devices from semiconductors to solar cells and Li-ion batteries. A material's properties, including electronic structure, are dependent on the arrangement of its atoms. However, structure determination (the process of uncovering the atomic arrangement), is impeded, both experimentally and computationally, by disorder. The lack of a verifiable atomic model presents a huge challenge when designing functional amorphous materials. Such materials may be characterised through their local atomic environments using, for example, solid-state NMR and XAS. By using these two spectroscopy methods to inform the sampling of configurations from ab initio molecular dynamics we devise and validate an amorphous model, choosing amorphous alumina to illustrate the approach due to its wide range of technological uses. Our model predicts two distinct geometric environments of AlO5 coordination polyhedra and determines the origin of the pre-edge features in the Al K-edge XAS. From our model we construct an average electronic density of states for amorphous alumina, and identify localized states at the conduction band minimum (CBM). We show that the presence of a pre-edge peak in the XAS is a result of transitions from the Al 1s to Al 3s states at the CBM. Deconvoluting this XAS by coordination geometry reveals contributions from both AlO4 and AlO5 geometries at the CBM give rise to the pre-edge, which provides insight into the role of AlO5 in the electronic structure of alumina. This work represents an important advance within the field of solid-state amorphous modelling, providing a method for developing amorphous models through the comparison of experimental and computationally derived spectra, which may then be used to determine the electronic structure of amorphous materials.

12.
Chemistry ; 18(38): 12078-84, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22887812

RESUMEN

The mechanism of crystallization of microporous titanosilicate ETS-10 was investigated by Raman spectroscopy combined with (29)Si magic-angle spinning (MAS) NMR spectroscopy, DFT calculations, and SEM imaging. The formation of three-membered ring species is shown to be the key step in the hydrothermal synthesis of ETS-10. They are formed by means of a complex process that involves the interaction of silicate species in the reaction mixture, which promotes the dissolution of TiO(2) particles. These insights into the mechanism of ETS-10 growth led to the successful development of a new synthesis route to the vanadosilicate AM-6 that involves the use of intermediates that contain three-membered ring species as an initiator.

13.
Chemistry ; 18(6): 1800-10, 2012 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-22223548

RESUMEN

New routes for the preparation of highly active TiO(2)-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, (63)Cu nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO(2) catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO(2) at 120 °C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO(2) at 140 °C, corresponding to an initial reaction rate of 104 mmol g(cat) (-1) s(-1). The activation energy on the Cu/mesoporous TiO(2) catalyst was found to be (144±5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123±3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO(2) support (75±2 kJ mol(-1)).

14.
Solid State Nucl Magn Reson ; 43-44: 14-21, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22365288

RESUMEN

Para hydrogen induced polarization (PHIP) is a powerful hyperpolarization technique, which increases the NMR sensitivity by several orders of magnitude. However the hyperpolarized signal is created as an anti-phase signal, which necessitates high magnetic field homogeneity and spectral resolution in the conventional PHIP schemes. This hampers the application of PHIP enhancement in many fields, as for example in food science, materials science or MRI, where low B(0)-fields or low B(0)-homogeneity do decrease spectral resolution, leading to potential extinction if in-phase and anti-phase hyperpolarization signals cannot be resolved. Herein, we demonstrate that the echo sequence (45°-τ-180°-τ) enables the acquisition of low resolution PHIP enhanced liquid state NMR signals of phenylpropiolic acid derivatives and phenylacetylene at a low cost low-resolution 0.54 T spectrometer. As low field TD-spectrometers are commonly used in industry or biomedicine for the relaxometry of oil-water mixtures, food, nano-particles, or other systems, we compare two variants of para-hydrogen induced polarization with data-evaluation in the time domain (TD-PHIP). In both TD-ALTADENA and the TD-PASADENA strong spin echoes could be detected under conditions when usually no anti-phase signals can be measured due to the lack of resolution. The results suggest that the time-domain detection of PHIP-enhanced signals opens up new application areas for low-field PHIP-hyperpolarization, such as non-invasive compound detection or new contrast agents and biomarkers in low-field Magnetic Resonance Imaging (MRI). Finally, solid-state NMR calculations are presented, which show that the solid echo (90y-τ-90x-τ) version of the TD-ALTADENA experiment is able to convert up to 10% of the PHIP signal into visible magnetization.


Asunto(s)
Hidrógeno/química , Espectroscopía de Resonancia Magnética/métodos , Acetileno/análogos & derivados , Acetileno/química , Espectroscopía de Resonancia Magnética/economía , Fenilpropionatos/química , Factores de Tiempo
15.
J Phys Chem C Nanomater Interfaces ; 125(17): 9050-9059, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34055125

RESUMEN

The enhancing effect of extraframework Al (EFAl) species on the acidity of bridging hydroxyl groups in a steam-calcined faujasite zeolite (ultrastabilized Y, USY) was investigated by in situ monitoring the H/D exchange reaction between benzene and deuterated zeolites by 1H MAS NMR spectroscopy. This exchange reaction involves Brønsted acid sites (BAS) located in sodalite cages and supercages. In a reference faujasite zeolite free from EFAl, both populations of BAS are equally and relatively slowly reactive toward C6H6. In USY, in stark contrast, the H/D exchange of sodalite hydroxyl groups is significantly faster than that of hydroxyl groups located in the faujasite supercages, even though benzene has only access to the supercages. This evidences selective enhancement of BAS near Lewis acidic EFAl species, which according to the NMR findings are located in the faujasite sodalite cages.

16.
J Phys Chem C Nanomater Interfaces ; 125(9): 4955-4967, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33763164

RESUMEN

Li-O2 batteries offer a high theoretical discharge capacity due to the formation of light discharged species such as Li2O2, which fill the porous positive electrode. However, in practice, it is challenging to reach the theoretical capacity and completely utilize the full electrode pore volume during discharge. With the formation of discharge products, the porous medium evolves, and the porosity and tortuosity factor of the positive electrode are altered through shrinkage and clogging of pores. A pore shrinks as solid discharge products accumulate, the pore clogging when it is filled (or when access is blocked). In this study, we investigate the structural evolution of the positive electrode through a combination of experimental and computational techniques. Pulsed field gradient nuclear magnetic resonance results show that the electrode tortuosity factor changes much faster than suggested by the Bruggeman relation (an equation that empirically links the tortuosity factor to the porosity) and that the electrolyte solvent affects the tortuosity factor evolution. The latter is ascribed to the different abilities of solvents to dissolve reaction intermediates, which leads to different discharge product particle sizes: on discharging using 0.5 M LiTFSI in dimethoxyethane, the tortuosity factor increases much faster than for discharging in 0.5 M LiTFSI in tetraglyme. The correlation between a discharge product size and tortuosity factor is studied using a pore network model, which shows that larger discharge products generate more pore clogging. The Knudsen diffusion effect, where collisions of diffusing molecules with pore walls reduce the effective diffusion coefficients, is investigated using a kinetic Monte Carlo model and is found to have an insignificant impact on the effective diffusion coefficient for molecules in pores with diameters above 5 nm, i.e., most of the pores present in the materials investigated here. As a consequence, pore clogging is thought to be the main origin of tortuosity factor evolution.

17.
Nat Commun ; 10(1): 5420, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780658

RESUMEN

Compared to nanomaterials exposing nonpolar facets, polar-faceted nanocrystals often exhibit unexpected and interesting properties. The electrostatic instability arising from the intrinsic dipole moments of polar facets, however, leads to different surface configurations in many cases, making it challenging to extract detailed structural information and develop structure-property relations. The widely used electron microscopy techniques are limited because the volumes sampled may not be representative, and they provide little chemical bonding information with low contrast of light elements. With ceria nanocubes exposing (100) facets as an example, here we show that the polar surface structure of oxide nanocrystals can be investigated by applying 17O and 1H solid-state NMR spectroscopy and dynamic nuclear polarization, combined with DFT calculations. Both CeO4-termination reconstructions and hydroxyls are present for surface polarity compensation and their concentrations can be quantified. These results open up new possibilities for investigating the structure and properties of oxide nanostructures with polar facets.

18.
Biomacromolecules ; 9(1): 84-90, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18067259

RESUMEN

Polymeric particles currently used for embolization procedures have the disadvantage that they are radiolucent, that is, invisible on X-ray images, and consequently the interventional radiologist has to resort to angiography to (indirectly) monitor the fate of the particles. Here, we introduce intrinsically radiopaque hydrophilic microspheres. Since these microspheres can directly be visualized on X-ray images, using these microspheres for embolization purposes will allow superprecise location of the embolic material, both during and after the procedure. The microspheres, which are prepared by suspension polymerization, are based on the radiopaque monomer 2-[4-iodobenzoyl]-oxo-ethylmethacrylate and hydroxyethylmethacrylate (HEMA) and/or 1-vinyl-2-pyrrolidinone (NVP) as hydrophilic component. It has been shown that for clinically relevant X-ray visibility the spheres should contain at least 20 wt % iodine. At this iodine content, copolymerization with HEMA results in spheres that hardly imbibe water (EQ = 1.08). When HEMA is replaced by NVP, the volume swelling ratio can be significantly increased (to 1.33).


Asunto(s)
Medios de Contraste , Microesferas , Yodobencenos/química , Metacrilatos/química , Pirrolidinonas/química , Rayos X
19.
J Phys Chem Lett ; 9(4): 791-797, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29341616

RESUMEN

While large dispersions in electrochemical performance have been reported for lithium oxygen batteries in the literature, they have not been investigated in any depth. The variability in the results is often assumed to arise from differences in cell design, electrode structure, handling and cell preparation at different times. An accurate theoretical framework turns out to be needed to get a better insight into the mechanisms underneath and to interpret experimental results. Here, we develop and use a pore network model to simulate the electrochemical performance of three-dimensionally resolved lithium-oxygen cathode mesostructures obtained from TXM nanocomputed tomography. We apply this model to the 3D reconstructed object of a Super P carbon electrode and calculate discharge curves, using identical conditions, for four different zones in the electrode and their reversed configurations. The resulting galvanostatic discharge curves show some dispersion, (both in terms of capacity and overpotential) which we attribute to the way pores are connected with each other. Based on these results, we propose that the stochastic nature of pores interconnectivity and the microscopic arrangement of pores can lead, at least partially, to the variations in electrochemical results observed experimentally.

20.
J Am Chem Soc ; 129(50): 15631-8, 2007 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18027942

RESUMEN

We provide detailed insight into complex supramolecular assembly processes by fully characterizing a multicomponent model system using dynamic light scattering, cryogenic transmission electron microscopy, atomic force microscopy, and various NMR techniques. First, a preassembly of a host molecule (the fifth-generation urea-adamantyl poly(propylene imine) dendrimer) and 32 guest molecules (a water- and chloroform-soluble ureidoacetic acid guest) was made in chloroform. The association constant in chloroform is concealed by guest self-association and is therefore higher than 10(3) M(-1). Via the neat state the single-host complex was transferred to water, where larger dendrimer-based assemblies were formed. The core of these assemblies, consisting of multiple host molecules (on average three), is kinetically trapped upon dissolution in water, and its size is constant irrespective of the concentration. The guest molecules forming the corona of the assemblies, however, stay dynamic since they are still in rapid exchange on the NMR time scale, as they were in chloroform. A stepwise noncovalent synthesis provides a means to obtain metastable dynamic supramolecular assemblies in water, structures that cannot be formed in one step.


Asunto(s)
Dendrímeros/química , Agua/química , Cloroformo/química , Simulación por Computador , Microscopía por Crioelectrón , Espectroscopía de Resonancia Magnética , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Modelos Químicos , Estructura Molecular , Volumetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA