Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 43(22): 10588-601, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26546517

RESUMEN

Tyrosine kinases respond to extracellular and intracellular cues by activating specific cellular signaling cascades to regulate cell cycle, growth, proliferation, differentiation and survival. Likewise, DNA damage response proteins (DDR) activated by DNA lesions or chromatin alterations recruit the DNA repair and cell cycle checkpoint machinery to restore genome integrity and cellular homeostasis. Several new examples have been uncovered in recent studies which reveal novel epigenetic and non-epigenetic mechanisms by which tyrosine kinases interact with DDR proteins to dictate cell fate, i.e. survival or apoptosis, following DNA damage. These studies reveal the ability of tyrosine kinases to directly regulate the activity of DNA repair and cell cycle check point proteins by tyrosine phosphorylation. In addition, tyrosine kinases epigenetically regulate DNA damage signaling pathways by modifying the core histones as well as chromatin modifiers at critical tyrosine residues. Thus, deregulated tyrosine kinase driven epigenomic alterations have profound implications in cancer, aging and genetic disorders. Consequently, targeting oncogenic tyrosine kinase induced epigenetic alterations has gained significant traction in overcoming cancer cell resistance to various therapies. This review discusses mechanisms by which tyrosine kinases interact with DDR pathways to regulate processes critical for maintaining genome integrity as well as clinical strategies for targeted cancer therapies.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Epigénesis Genética , Histonas/metabolismo , Humanos , Proteínas Tirosina Quinasas Receptoras/metabolismo
2.
Trends Genet ; 29(7): 394-402, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23537585

RESUMEN

The cell cycle requires cells to duplicate their chromatin, DNA, and histones, while retaining a subset of epigenetic marks, in a highly coordinated manner. The WEE1 kinase was identified as an important regulator during S phase, preventing entry into mitosis until DNA replication has been completed. Interestingly, WEE1 has also emerged as a key player in regulating histone synthesis. It phosphorylates histone H2B at tyrosine 37 in the nucleosomes found upstream of the histone gene cluster, and this suppresses histone transcription in late S phase. These observations highlight a dual role for WEE1 as both a mitotic gatekeeper and a surveyor of chromatin synthesis, providing a direct link between epigenetics and cell-cycle progression. Importantly, this link has implications for the design of novel epigenetic inhibitors targeting cancers that display elevated expression of this kinase.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Epigénesis Genética , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Ciclo Celular , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Marcadores Genéticos , Histonas/genética , Humanos , Mitosis , Neoplasias/genética , Neoplasias/terapia , Proteínas Nucleares/genética , Fosforilación , Proteínas Tirosina Quinasas/genética
3.
J Biol Chem ; 289(41): 28179-91, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25148682

RESUMEN

Hormone therapy with the selective estrogen-receptor modulator tamoxifen provides a temporary relief for patients with estrogen receptor α (ER)-positive breast cancers. However, a subset of patients exhibiting overexpression of the HER2 receptor tyrosine kinase displays intrinsic resistance to tamoxifen therapy. Therefore, elucidating the mechanisms promoting the estrogen (E2)-independent ER-regulated gene transcription in tamoxifen-resistant breast tumors is essential to identify new therapeutic avenues to overcome drug resistance and ameliorate poor prognosis. The non-receptor tyrosine kinase, ACK1 (also known as TNK2), has emerged as a major integrator of signaling from various receptor tyrosine kinases including HER2. We have uncovered that heregulin-mediated ACK1 activation promoted ER activity in the presence of tamoxifen, which was significantly down-regulated upon ACK1 knockdown or inhibition of ACK1 by small molecule inhibitors, AIM-100 or Dasatinib. We report that ACK1 phosphorylates the ER co-activator, KDM3A, a H3K9 demethylase, at an evolutionary conserved tyrosine 1114 site in a heregulin-dependent manner, even in the presence of tamoxifen. Consistent with this finding, ACK1 activation resulted in a significant decrease in the deposition of dimethyl H3K9 epigenetic marks. Conversely, inhibition of ACK1 by AIM-100 or Dasatinib restored dimethyl H3K9 methylation marks and caused transcriptional suppression of the ER-regulated gene HOXA1. Thus, by its ability to regulate the epigenetic activity of an ER co-activator KDM3A, ACK1 modulates HOXA1 expression in the absence of E2, conferring tamoxifen resistance. These data reveal a novel therapeutic option, suppression of ACK1 signaling by AIM-100 or Dasatinib, to mitigate HOXA1 up-regulation in breast cancer patients displaying tamoxifen resistance.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular Tumoral , Dasatinib , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Epigénesis Genética , Genes Reporteros , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Luciferasas/genética , Luciferasas/metabolismo , Glándulas Mamarias Humanas/efectos de los fármacos , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Metilación , Modelos Moleculares , Datos de Secuencia Molecular , Neurregulina-1/genética , Neurregulina-1/metabolismo , Unión Proteica , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Pirimidinas/farmacología , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transducción de Señal , Tamoxifeno/farmacología , Tiazoles/farmacología , Transcripción Genética
4.
Trends Cancer ; 10(4): 369-381, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341319

RESUMEN

Prostate cancer (PC) is immunosuppressive and refractory to immunotherapy. Infiltration of myeloid-derived suppressor cells (MDSCs) and senescent-like neutrophils and T cell exhaustion are observed in the tumor microenvironment (TME) following androgen receptor (AR) antagonism with antiandrogens or androgen ablation. De novo post-translational acetylation of the AR, HOXB13, and H2A at K609, K13, and K130, respectively, and phosphorylation of H4 at Y88 have emerged as key epigenetic modifications associated with castration-resistant PC (CRPC). The resulting chromatin changes are integrated into cellular processes via phosphorylation of the AR, ACK1, ATPF1A, and SREBP1 at Y267, Y284, Y243/Y246, and Y673/Y951, respectively. In this review, we discuss how these de novo epigenetic alterations drive resistance and how efforts aimed at targeting these regulators may overcome immune suppression observed in PC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Fosforilación , Antagonistas de Andrógenos , Epigénesis Genética , Microambiente Tumoral/genética
5.
Cancers (Basel) ; 16(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38730575

RESUMEN

Advanced localized prostate cancers (PC) recur despite chemotherapy, radiotherapy and/or androgen deprivation therapy. We recently reported HOXB13 lysine (K)13 acetylation as a gain-of-function modification that regulates interaction with the SWI/SNF chromatin remodeling complex and is critical for anti-androgen resistance. However, whether acetylated HOXB13 promotes PC cell survival following treatment with genotoxic agents is not known. Herein, we show that K13-acetylated HOXB13 is induced rapidly in PC cells in response to DNA damage induced by irradiation (IR). It colocalizes with the histone variant γH2AX at sites of double strand breaks (DSBs). Treatment of PCs with the Androgen Receptor (AR) antagonist Enzalutamide (ENZ) did not suppress DNA-damage-induced HOXB13 acetylation. In contrast, HOXB13 depletion or loss of acetylation overcame resistance of PC cells to ENZ and synergized with IR. HOXB13K13A mutants show diminished replication fork progression, impaired G2/M arrest with significant cell death following DNA damage. Mechanistically, we found that amino terminus regulates HOXB13 nuclear puncta formation that is essential for proper DNA damage response. Therefore, targeting HOXB13 acetylation with CBP/p300 inhibitors in combination with DNA damaging therapy may be an effective strategy to overcome anti-androgen resistance of PCs.

6.
J Nucl Med ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38936974

RESUMEN

Homeobox 13 (HOXB13) is an oncogenic transcription factor that directly regulates expression of folate hydrolase 1, which encodes prostate-specific membrane antigen (PSMA). HOXB13 is expressed in primary and metastatic prostate cancers (PCs) and promotes androgen-independent PC growth. Since HOXB13 promotes resistance to androgen receptor (AR)-targeted therapies and regulates the expression of folate hydrolase 1, we investigated whether SUVs on PSMA PET would correlate with HOXB13 expression. Methods: We analyzed 2 independent PC patient cohorts who underwent PSMA PET/CT for initial staging or for biochemical recurrence. In the discovery cohort, we examined the relationship between HOXB13, PSMA, and AR messenger RNA (mRNA) expression in prostate biopsy specimens from 179 patients who underwent PSMA PET/CT with 18F-piflufolastat. In the validation cohort, we confirmed the relationship between HOXB13, PSMA, and AR by comparing protein expression in prostatectomy and lymph node (LN) sections from 19 patients enrolled in 18F-rhPSMA-7.3 PET clinical trials. Correlation and association analyses were also used to confirm the relationship between the markers, LN positivity, and PSMA PET SUVs. Results: We observed a significant correlation between PSMA and HOXB13 mRNA (P < 0.01). The association between HOXB13 and 18F-piflufolastat SUVs was also significant (SUVmax, P = 0.0005; SUVpeak, P = 0.0006). Likewise, the PSMA SUVmax was significantly associated with the expression of HOXB13 protein in the 18F-rhPSMA-7.3 PET cohort (P = 0.008). Treatment-naïve patients with LN metastases demonstrated elevated HOXB13 and PSMA levels in their tumors as well as higher PSMA tracer uptake and low AR expression. Conclusion: Our findings demonstrate that HOXB13 correlates with PSMA expression and PSMA PET SUVs at the mRNA and protein levels. Our study suggests that the PSMA PET findings may reflect oncogenic HOXB13 transcriptional activity in PC, thus potentially serving as an imaging biomarker for more aggressive disease.

7.
Nat Commun ; 15(1): 5629, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965223

RESUMEN

Mutations that decrease or increase the activity of the tyrosine phosphatase, SHP2 (encoded by PTPN11), promotes developmental disorders and several malignancies by varying phosphatase activity. We uncovered that SHP2 is a distinct class of an epigenetic enzyme; upon phosphorylation by the kinase ACK1/TNK2, pSHP2 was escorted by androgen receptor (AR) to chromatin, erasing hitherto unidentified pY54-H3 (phosphorylation of histones H3 at Tyr54) epigenetic marks to trigger a transcriptional program of AR. Noonan Syndrome with Multiple Lentigines (NSML) patients, SHP2 knock-in mice, and ACK1 knockout mice presented dramatic increase in pY54-H3, leading to loss of AR transcriptome. In contrast, prostate tumors with high pSHP2 and pACK1 activity exhibited progressive downregulation of pY54-H3 levels and higher AR expression that correlated with disease severity. Overall, pSHP2/pY54-H3 signaling acts as a sentinel of AR homeostasis, explaining not only growth retardation, genital abnormalities and infertility among NSML patients, but also significant AR upregulation in prostate cancer patients.


Asunto(s)
Epigénesis Genética , Histonas , Homeostasis , Ratones Noqueados , Neoplasias de la Próstata , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Receptores Androgénicos , Animales , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Histonas/metabolismo , Masculino , Humanos , Ratones , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Fosforilación , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Transducción de Señal , Cromatina/metabolismo
8.
Cancers (Basel) ; 16(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38201640

RESUMEN

Our objective was to identify variations in gene expression that could help elucidate the pathways for the development of prostate cancer (PCa) in men with Benign Prostatic Hyperplasia (BPH). We included 98 men with BPH, a positive prostate MRI (Prostate Imaging Reporting and Data System; PIRADS ≥ 4), and a negative biopsy from November 2014 to January 2018. RNA sequencing (RNA-Seq) was performed on tissue cores from the MRI lesion and a geographically distant region (two regions per patient). All patients were followed for at least three years to identify who went on to develop PCa. We compared the gene expressions of those who did not develop PCa ("BPH-only") vs. those who did ("BPH/PCa"). Then, we identified the subset of men with BPH who had the highest American Urological Association (AUA) symptom scores ("symptomatic BPH") and compared their gene expression to the BPH/PCa group. At a median follow-up of 47.5 months, 15 men had developed PCa while 83 did not. We compared gene expressions of 14 men with symptomatic BPH (AUAss ≥ 18) vs. 15 with BPH/PCa. We found two clusters of genes, suggesting the two groups had distinctive molecular features. Differential analysis revealed genes that were upregulated in BPH-only and downregulated in BPH/PCa, and vice versa. Symptomatic BPH men had upregulation of T-cell activation markers (TCR, CD3, ZAP70, IL-2 and IFN-γ and chemokine receptors, CXCL9/10) expression. In contrast, men with BPH/PCa had upregulation of NKX3-1 and HOXB13 transcription factors associated with luminal epithelial progenitors but depleted of immune cells, suggesting a cell-autonomous role in immune evasion. Symptomatic BPH with immune-enriched landscapes may support anti-tumor immunity. RNA sequencing of benign prostate biopsy tissue showing upregulation of NKX3-1 and HOXB13 with the absence of T-cells might help in identifying men at higher risk of future PCa development, which may be useful in determining ongoing PCa screening.

9.
J Biol Chem ; 287(26): 22112-22, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22566699

RESUMEN

Androgen deprivation therapy has been the standard of care in prostate cancer due to its effectiveness in initial stages. However, the disease recurs, and this recurrent cancer is referred to as castration-resistant prostate cancer (CRPC). Radiotherapy is the treatment of choice; however, in addition to androgen independence, CRPC is often resistant to radiotherapy, making radioresistant CRPC an incurable disease. The molecular mechanisms by which CRPC cells acquire radioresistance are unclear. Androgen receptor (AR)-tyrosine 267 phosphorylation by Ack1 tyrosine kinase (also known as TNK2) has emerged as an important mechanism of CRPC growth. Here, we demonstrate that pTyr(267)-AR is recruited to the ATM (ataxia telangiectasia mutated) enhancer in an Ack1-dependent manner to up-regulate ATM expression. Mice engineered to express activated Ack1 exhibited a significant increase in pTyr(267)-AR and ATM levels. Furthermore, primary human CRPCs with up-regulated activated Ack1 and pTyr(267)-AR also exhibited significant increase in ATM expression. The Ack1 inhibitor AIM-100 not only inhibited Ack1 activity but also was able to suppress AR Tyr(267) phosphorylation and its recruitment to the ATM enhancer. Notably, AIM-100 suppressed Ack1 mediated ATM expression and mitigated the growth of radioresistant CRPC tumors. Thus, our study uncovers a previously unknown mechanism of radioresistance in CRPC, which can be therapeutically reversed by a new synergistic approach that includes radiotherapy along with the suppression of Ack1/AR/ATM signaling by the Ack1 inhibitor, AIM-100.


Asunto(s)
Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/radioterapia , Proteínas Tirosina Quinasas/metabolismo , Receptores Androgénicos/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Humanos , Inmunohistoquímica/métodos , Concentración 50 Inhibidora , Masculino , Ratones , Ratones Transgénicos , Trasplante de Neoplasias , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Tolerancia a Radiación , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo
10.
Am J Pathol ; 180(4): 1386-93, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22322295

RESUMEN

Pancreatic cancer is a significant cause of cancer mortality worldwide as the disease has advanced significantly in patients before symptoms are evident. The signal transduction pathways that promote this rapid progression are not well understood. Ack1 or TNK2, an ubiquitously expressed oncogenic non-receptor tyrosine kinase, integrates signals from ligand-activated receptor tyrosine kinases to modulate intracellular signaling cascades. In the present study, we investigated the Ack1 activation profile in a pancreatic cancer tumor microarray, and observed that expression levels of activated Ack1 and pTyr284-Ack1 positively correlated with the severity of disease progression and inversely correlated with the survival of patients with pancreatic cancer. To explore the mechanisms by which Ack1 promotes tumor progression, we investigated the role of AKT/PKB, an oncogene and Ack1-interacting protein. Ack1 activates AKT directly in pancreatic and other cancer cell lines by phosphorylating AKT at Tyr176 to promote cell survival. In addition, the Ack1 inhibitor AIM-100 not only inhibited Ack1 activation but also suppressed AKT tyrosine phosphorylation, leading to cell cycle arrest in the G1 phase. This effect resulted in a significant decrease in the proliferation of pancreatic cancer cells and induction of apoptosis. Collectively, our data indicate that activated Ack1 could be a prognostic marker for ascertaining early or advanced pancreatic cancer. Thus, Ack1 inhibitors hold promise for therapeutic intervention to inhibit pancreatic tumor growth.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Pancreáticas/enzimología , Proteínas Tirosina Quinasas/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Activación Enzimática , Humanos , Estimación de Kaplan-Meier , Neoplasias Pancreáticas/patología , Fosforilación , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Células Tumorales Cultivadas
11.
Cell Rep Med ; 4(10): 101199, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37738978

RESUMEN

Cancer immunotherapy has gained traction in recent years owing to remarkable tumor clearance in some patients. Despite the notable success of immune checkpoint blockade (ICB) in multiple malignancies, engagement of the immune system for targeted prostate cancer (PCa) therapy is still in its infancy. Multiple factors contribute to limited response, including the heterogeneity of PCa, the cold tumor microenvironment, and a low number of neoantigens. Significant effort is being invested in improving immune-based PCa therapies. This review is a summary of the status of immunotherapy in treating PCa, with a discussion of multiple immune modalities, including vaccines, adoptively transferred T cells, and bispecific T cell engagers, some of which are undergoing clinical trials. In addition, this review also focuses on emerging mechanism-based small-molecule tyrosine kinase inhibitors with immune modulatory properties that, either as single agents or in combination with other immunotherapies, have the potential to improve clinical outcomes.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Inmunoterapia , Linfocitos T/patología , Microambiente Tumoral
12.
Oncogene ; 42(29): 2263-2277, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37330596

RESUMEN

Hormone receptor-positive, HER2-negative advanced breast cancers exhibit high sensitivity to CDK4/6 inhibitors such as palbociclib. However, most patients inevitably develop resistance, thus identification of new actionable therapeutic targets to overcome the recurrent disease is an urgent need. Immunohistochemical studies of tissue microarray revealed increased activation of non-receptor tyrosine kinase, ACK1 (also known as TNK2) in most of the breast cancer subtypes, independent of their hormone receptor status. Chromatin immunoprecipitation studies demonstrated that the nuclear target of activated ACK1, pY88-H4 epigenetic marks, were deposited at cell cycle genes, CCNB1, CCNB2 and CDC20, which in turn initiated their efficient transcription. Pharmacological inhibition of ACK1 using its inhibitor, (R)-9b dampened CCNB1, CCNB2 and CDC20 expression, caused G2/M arrest, culminating in regression of palbociclib-resistant breast tumor growth. Further, (R)-9b suppressed expression of CXCR4 receptor, which resulted in significant impairment of metastasis of breast cancer cells to lung. Overall, our pre-clinical data identifies activated ACK1 as an oncogene that epigenetically controls the cell cycle genes governing the G2/M transition in breast cancer cells. ACK1 inhibitor, (R)-9b could be a novel therapeutic option for the breast cancer patients that have developed resistance to CDK4/6 inhibitors.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas Tirosina Quinasas/genética , Genes cdc , Apoptosis , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Epigénesis Genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo
13.
Nat Commun ; 14(1): 3357, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296155

RESUMEN

The testicular androgen biosynthesis is well understood, however, how cancer cells gauge dwindling androgen to dexterously initiate its de novo synthesis remained elusive. We uncover dual-phosphorylated form of sterol regulatory element-binding protein 1 (SREBF1), pY673/951-SREBF1 that acts as an androgen sensor, and dissociates from androgen receptor (AR) in androgen deficient environment, followed by nuclear translocation. SREBF1 recruits KAT2A/GCN5 to deposit epigenetic marks, histone H2A Lys130-acetylation (H2A-K130ac) in SREBF1, reigniting de novo lipogenesis & steroidogenesis. Androgen prevents SREBF1 nuclear translocation, promoting T cell exhaustion. Nuclear SREBF1 and H2A-K130ac levels are significantly increased and directly correlated with late-stage prostate cancer, reversal of which sensitizes castration-resistant prostate cancer (CRPC) to androgen synthesis inhibitor, Abiraterone. Further, we identify a distinct CRPC lipid signature resembling lipid profile of prostate cancer in African American (AA) men. Overall, pY-SREBF1/H2A-K130ac signaling explains cancer sex bias and reveal synchronous inhibition of KAT2A and Tyr-kinases as an effective therapeutic strategy.


Asunto(s)
Andrógenos , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Andrógenos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Histonas/metabolismo , Acetilación , Línea Celular Tumoral , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Lípidos
14.
J Cell Physiol ; 227(9): 3178-84, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22307544

RESUMEN

AKT/PKB serine threonine kinase, a critical signaling molecule promoting cell growth and survival pathways, is frequently dysregulated in many cancers. Although phosphatidylinositol-3-OH kinase (PI3K), a lipid kinase, is well characterized as a major regulator of AKT activation in response to a variety of ligands, recent studies highlight a diverse group of tyrosine (Ack1/TNK2, Src, PTK6) and serine/threonine (TBK1, IKBKE, DNAPKcs) kinases that activate AKT directly to promote its pro-proliferative signaling functions. While some of these alternate AKT activating kinases respond to growth factors, others respond to inflammatory and genotoxic stimuli. A common theme emerging from these studies is that aberrant or hyperactivation of these alternate kinases is often associated with malignancy. Consequently, evaluating the use of small molecular inhibitors against these alternate AKT activating kinases at earlier stages of cancer therapy may overcome the pressing problem of drug resistance surfacing especially in patients treated with PI3K inhibitors.


Asunto(s)
Elafina/antagonistas & inhibidores , Neoplasias/metabolismo , Neoplasias/terapia , Proteína Oncogénica v-akt/genética , Proteína Oncogénica v-akt/metabolismo , Activación Transcripcional , Ciclo Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs , Terapia Molecular Dirigida , Mutación , Neoplasias/genética , Proteína Oncogénica v-akt/antagonistas & inhibidores , Fosforilación , Transducción de Señal
15.
Clin Cancer Res ; 28(18): 4131-4145, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35849143

RESUMEN

PURPOSE: Androgen receptor (AR) antagonism is exacerbated by HOXB13 in castration-resistant prostate cancers (CRPC). However, it is unclear when and how HOXB13 primes CRPCs for AR antagonism. By mass-spectrometry analysis of CRPC extract, we uncovered a novel lysine 13 (K13) acetylation in HOXB13 mediated by CBP/p300. To determine whether acetylated K13-HOXB13 is a clinical biomarker of CRPC development, we characterized its role in prostate cancer biology. EXPERIMENTAL DESIGN: We identified tumor-specific acK13-HOXB13 signal enriched super enhancer (SE)-regulated targets. We analyzed the effect of loss of HOXB13K13-acetylation on chromatin binding, SE proximal target gene expression, self-renewal, enzalutamide sensitivity, and CRPC tumor growth by employing isogenic parental and HOXB13K13A mutants. Finally, using primary human prostate organoids, we evaluated whether inhibiting an acK13-HOXB13 target, ACK1, with a selective inhibitor (R)-9b is superior to AR antagonists in inhibiting CRPC growth. RESULTS: acK13-HOXB13 promotes increased expression of lineage (AR, HOXB13), prostate cancer diagnostic (FOLH1), CRPC-promoting (ACK1), and angiogenesis (VEGFA, Angiopoietins) genes early in prostate cancer development by establishing tumor-specific SEs. acK13-HOXB13 recruitment to key SE-regulated targets is insensitive to enzalutamide. ACK1 expression is significantly reduced in the loss of function HOXB13K13A mutant CRPCs. Consequently, HOXB13K13A mutants display reduced self-renewal, increased sensitivity to enzalutamide, and impaired xenograft tumor growth. Primary human prostate tumor organoids expressing HOXB13 are significantly resistant to AR antagonists but sensitive to (R)-9b. CONCLUSIONS: In summary, acetylated HOXB13 is a biomarker of clinically significant prostate cancer. Importantly, PSMA-targeting agents and (R)-9b could be new therapeutic modalities to target HOXB13-ACK1 axis regulated prostate cancers.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Receptores Androgénicos/farmacología , Benzamidas , Línea Celular Tumoral , Proteínas de Homeodominio/genética , Humanos , Masculino , Nitrilos/uso terapéutico , Feniltiohidantoína/farmacología , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo
16.
Cancer Res ; 82(1): 155-168, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740892

RESUMEN

Androgen receptor (AR) signaling continues to play a dominant role in all stages of prostate cancer, including castration-resistant prostate cancers (CRPC) that have developed resistance to second generation AR antagonists such as enzalutamide. In this study, we identified a long noncoding RNA (lncRNA), NXTAR (LOC105373241) that is located convergent with the AR gene and is repressed in human prostate tumors and cell lines. NXTAR bound upstream of the AR promoter and promoted EZH2 recruitment, causing significant loss of AR (and AR-V7) expression. Paradoxically, AR bound the NXTAR promoter, and inhibition of AR by the ACK1/TNK2 small molecule inhibitor (R)-9b excluded AR from the NXTAR promoter. The histone acetyltransferase GCN5 bound and deposited H3K14 acetylation marks, enhancing NXTAR expression. Application of an oligonucleotide derived from NXTAR exon 5 (NXTAR-N5) suppressed AR/AR-V7 expression and prostate cancer cell proliferation, indicating the translational relevance of the negative regulation of AR. In addition, pharmacologic restoration of NXTAR using (R)-9b abrogated enzalutamide-resistant prostate xenograft tumor growth. Overall, this study uncovers a positive feedback loop, wherein NXTAR acts as a novel prostate tumor-suppressing lncRNA by inhibiting AR/AR-V7 expression, which in turn upregulates NXTAR levels, compromising enzalutamide-resistant prostate cancer. The restoration of NXTAR could serve as a new therapeutic modality for patients who have acquired resistance to second generation AR antagonists. SIGNIFICANCE: This study identifies NXTAR as a tumor suppressive lncRNA that can epigenetically downregulate AR/AR-V7 expression and provides a therapeutic strategy to reinstate NXTAR expression for treating recurrent CRPC.


Asunto(s)
Benzamidas/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Nitrilos/uso terapéutico , Feniltiohidantoína/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , ARN Largo no Codificante/metabolismo , Receptores Androgénicos/metabolismo , Animales , Benzamidas/farmacología , Humanos , Masculino , Ratones , Ratones SCID , Nitrilos/farmacología , Feniltiohidantoína/farmacología , Neoplasias de la Próstata Resistentes a la Castración/genética , Transfección
17.
Sci Transl Med ; 14(649): eabg4132, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35704598

RESUMEN

Resistance to second-generation androgen receptor (AR) antagonists such as enzalutamide is an inevitable consequence in patients with castration-resistant prostate cancer (CRPC). There are no effective therapeutic options for this recurrent disease. The expression of truncated AR variant 7 (AR-V7) has been suggested to be one mechanism of resistance; however, its low frequency in patients with CRPC does not explain the almost universal acquisition of resistance. We noted that the ability of AR to translocate to nucleus in an enzalutamide-rich environment opens up the possibility of a posttranslational modification in AR that is refractory to enzalutamide binding. Chemical proteomics in enzalutamide-resistant CRPC cells revealed acetylation at Lys609 in the zinc finger DNA binding domain of AR (acK609-AR) that not only allowed AR translocation but also galvanized a distinct global transcription program, conferring enzalutamide insensitivity. Mechanistically, acK609-AR was recruited to the AR and ACK1/TNK2 enhancers, up-regulating their transcription. ACK1 kinase-mediated AR Y267 phosphorylation was a prerequisite for AR K609 acetylation, which spawned positive feedback loops at both the transcriptional and posttranslational level that regenerated and sustained high AR and ACK1 expression. Consistent with these findings, oral and subcutaneous treatment with ACK1 small-molecule inhibitor, (R)-9b, not only curbed AR Y267 phosphorylation and subsequent K609 acetylation but also compromised enzalutamide-resistant CRPC xenograft tumor growth in mice. Overall, these data uncover chronological modification events in AR that allows prostate cancer to evolve through progressive stages to reach the resilient recurrent CRPC stage, opening up a therapeutic vulnerability.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/uso terapéutico , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Masculino , Ratones , Nitrilos , Fosforilación , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteínas Tirosina Quinasas/metabolismo , Receptores Androgénicos/metabolismo
18.
Nat Commun ; 13(1): 6929, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376335

RESUMEN

Solid tumours are highly refractory to immune checkpoint blockade (ICB) therapies due to the functional impairment of effector T cells and their inefficient trafficking to tumours. T-cell activation is negatively regulated by C-terminal Src kinase (CSK); however, the exact mechanism remains unknown. Here we show that the conserved oncogenic tyrosine kinase Activated CDC42 kinase 1 (ACK1) is able to phosphorylate CSK at Tyrosine 18 (pY18), which enhances CSK function, constraining T-cell activation. Mice deficient in the Tnk2 gene encoding Ack1, are characterized by diminished CSK Y18-phosphorylation and spontaneous activation of CD8+ and CD4+ T cells, resulting in inhibited growth of transplanted ICB-resistant tumours. Furthermore, ICB treatment of castration-resistant prostate cancer (CRPC) patients results in re-activation of ACK1/pY18-CSK signalling, confirming the involvement of this pathway in ICB insensitivity. An ACK1 small-molecule inhibitor, (R)-9b, recapitulates inhibition of ICB-resistant tumours, which provides evidence for ACK1 enzymatic activity playing a pivotal role in generating ICB resistance. Overall, our study identifies an important mechanism of ICB resistance and holds potential for expanding the scope of ICB therapy to tumours that are currently unresponsive.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Proteína Tirosina Quinasa CSK , Fosforilación , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Tirosina Quinasas/metabolismo
19.
J Cell Physiol ; 224(2): 327-33, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20432460

RESUMEN

Ack1 (also known as ACK, TNK2, or activated Cdc42 kinase) is a structurally unique non-receptor tyrosine kinase that is expressed in diverse cell types. It integrates signals from plethora of ligand-activated receptor tyrosine kinases (RTKs), for example, MERTK, EGFR, HER2, PDGFR and insulin receptor to initiate intracellular signaling cascades. Ack1 transduces extracellular signals to cytosolic and nuclear effectors such as the protein kinase AKT/PKB and androgen receptor (AR), to promote cell survival and growth. While tyrosine phosphorylation of AR at Tyr267 regulates androgen-independent recruitment of AR to the androgen-responsive enhancers and transcription of AR target genes to drive prostate cancer progression, phosphorylation of an evolutionarily conserved Tyrosine 176 in the kinase domain of AKT is essential for mitotic progression and positively correlates with breast cancer progression. In contrast to AR and AKT, Ack1-mediated phosphorylation of the tumor suppressor Wwox at Tyr287 lead to rapid Wwox polyubiquitination followed by degradation. Thus, by its ability to promote tumor growth by negatively regulating tumor suppressor such as Wwox and positively regulating pro-survival factors such as AKT and AR, Ack1 is emerging as a critical player in cancer biology. In this review, we discuss recent advances in understanding the physiological functions of Ack1 signaling in normal cells and the consequences of its hyperactivation in various cancers.


Asunto(s)
Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Androgénicos/metabolismo , Animales , Humanos , Modelos Animales , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo
20.
Prostate ; 70(12): 1274-85, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20623637

RESUMEN

BACKGROUND: Androgen receptor (AR) plays a critical role in the progression of both androgen-dependent and androgen-independent prostate cancer (AIPC). Ligand-independent activation of AR in AIPC or castration resistant prostate cancer (CRPC) is often associated with poor prognosis. Recently, tyrosine kinase Ack1 has been shown to regulate AR activity by phosphorylating it at tyrosine 267 and this event was shown to be critical for AIPC growth. However, whether a small molecule inhibitor that can mitigate Ack1 activation is sufficient to abrogate AR activity on AR regulated promoters in androgen-depleted environment is not known. METHODS: We have generated two key resources, antibodies that specifically recognize pTyr267-AR and synthesized a small molecule inhibitor of Ack1, 4-amino-5,6-biaryl-furo[2,3-d]pyrimidine (named here as AIM-100) to test whether AIM-100 modulates ligand-independent AR activity and inhibits prostate cell growth. RESULTS: Prostate tissue microarray analysis indicates that Ack1 Tyr284 phosphorylation correlates positively with disease progression and negatively with the survival of prostate cancer patients. Interestingly, neither pTyr267-AR expression nor its transcriptional activation was affected by anti-androgens in activated Ack1 expressing or EGF stimulated prostate cells. However, the Ack1 inhibitor, AIM-100, not only inhibited Ack1 activation but also able to suppress pTyr267-AR phosphorylation, binding of AR to PSA, NKX3.1, and TMPRSS2 promoters, and inhibit AR transcription activity. CONCLUSION: Ack1 Tyr284 phosphorylation is prognostic of progression of prostate cancer and inhibitors of Ack1 activity could be novel therapeutic agents to treat AIPC.


Asunto(s)
Andrógenos/fisiología , Neoplasias de la Próstata/fisiopatología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Receptores Androgénicos/fisiología , Secuencia de Aminoácidos , Andrógenos/genética , Animales , Formación de Anticuerpos , Línea Celular Tumoral , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfopéptidos/química , Hiperplasia Prostática/complicaciones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/mortalidad , Conejos , Receptores Androgénicos/genética , Receptores Androgénicos/inmunología , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA