Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proteins ; 68(1): 26-33, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17410581

RESUMEN

H+/Cl- antiport behavior has recently been observed in bacterial chloride channel homologs and eukaryotic CLC-family proteins. The detailed molecular-level mechanism driving the stoichiometric exchange is unknown. In the bacterial structure, experiments and modeling studies have identified two acidic residues, E148 and E203, as key sites along the proton pathway. The E148 residue is a major component of the fast gate, and it occupies a site crucial for both H+ and Cl- transport. E203 is located on the intracellular side of the protein; it is vital for H+, but not Cl-, transport. This suggests two independent ion transit pathways for H+ and Cl- on the intracellular side of the transporter. Previously, we utilized a new pore-searching algorithm, TransPath, to predict Cl- and H+ ion pathways in the bacterial ClC channel homolog, focusing on proton access from the extracellular solution. Here we employ the TransPath method and molecular dynamics simulations to explore H+ pathways linking E148 and E203 in the presence of Cl- ions located at the experimentally observed binding sites in the pore. A conclusion is that Cl- ions are required at both the intracellular (S(int)) and central (S(cen)) binding sites in order to create an electrostatically favorable H+ pathway linking E148 and E203; this electrostatic coupling is likely related to the observed 1H+/2Cl- stoichiometry of the antiporter. In addition, we suggest that a tyrosine residue side chain (Y445), located near the Cl- ion binding site at S(cen), is involved in proton transport between E148 and E203.


Asunto(s)
Proteínas Bacterianas/química , Canales de Cloruro/química , Cloruros/química , Modelos Moleculares , Protones , Sitios de Unión/genética , Simulación por Computador , Transporte Iónico , Electricidad Estática
2.
Proteins ; 57(2): 414-21, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15340928

RESUMEN

ClC chloride channels possess a homodimeric structure in which each monomer contains an independent chloride ion pathway. ClC channel gating is regulated by chloride ion concentration, pH and voltage. Based on structural and physiological evidence, it has been proposed that a glutamate residue on the extracellular end of the selectivity filter acts as a fast gate. We utilized a new search algorithm that incorporates electrostatic information to explore the ion transit pathways through wild-type and mutant bacterial ClC channels. Examination of the chloride ion permeation pathways supports the importance of the glutamate residue in gating. An external chloride binding site previously postulated in physiological experiments is located near a conserved basic residue adjacent to the gate. In addition, access pathways are found for proton migration to the gate, enabling pH control at hyperpolarized membrane potentials. A chloride ion in the selectivity filter is required for the pH-dependent gating mechanism.


Asunto(s)
Canales de Cloruro/metabolismo , Activación del Canal Iónico/fisiología , Sustitución de Aminoácidos/fisiología , Permeabilidad de la Membrana Celular/fisiología , Canales de Cloruro/química , Cloruros/metabolismo , Electrofisiología/métodos , Escherichia coli K12/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ácido Glutámico/química , Ácido Glutámico/fisiología , Glutamina/química , Glutamina/fisiología , Concentración de Iones de Hidrógeno , Potenciales de la Membrana/fisiología , Mutación/fisiología , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA