Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Gynecol Oncol ; 173: 114-121, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37121178

RESUMEN

OBJECTIVE: To demonstrate that shared antibody responses in endometriosis and endometriosis-associated ovarian cancer spontaneously antagonize malignant progression and can be leveraged to develop future immunotherapies. METHODS: B cells from cyopreserved clear cell ovarian carcinoma (CCC, n = 2), endometrioid ovarian carcinoma (EC, n = 2), and endometriomas (n = 2) were isolated, activated, and EBV-immortalized. Antibodies were purified from B cell supernatants and used for screening arrays containing most of the human proteome. Targets were prioritized based on accessibility (transmembrane or secreted proteins), expression in endometriosis and cancer, and concurrent IgA and IgG responses. We focused on antibodies targeting tumor-promoting syndecan binding protein (SDCBP) to demonstrate anti-tumor activity. Immunoblots and qPCR were performed to assess SDCBP expression in ovarian cancer and endometriosis cell lines and tumor samples. Recombinant IgG4 was generated using the variable heavy and light chains of dominant B cell receptors (BCRs) reacting against the extracellular domain of SDCBP, and used in in vivo studies in human CCC- and high-grade serous ovarian carcinoma (HGSOC)-bearing immunodeficient mice. RESULTS: Nine accessible proteins detected by both IgA and IgG were identified in all samples - including SDCBP, which is expressed in ovarian carcinomas of multiple histologies. Administration of α-SDCBP IgG4 in OVCAR3 (HGSOC), TOV21G and RMG-I (CCC) tumor-bearing mice significantly decreased tumor volume compared to control irrelevant IgG4. CONCLUSIONS: Spontaneous antibody responses exert suboptimal but measurable immune pressure against malignant progression in ovarian carcinomas. Using tumor-derived antibodies for developing novel immunotherapeutics warrants further investigation.


Asunto(s)
Adenocarcinoma de Células Claras , Carcinoma Endometrioide , Endometriosis , Neoplasias Ováricas , Humanos , Femenino , Animales , Ratones , Neoplasias Ováricas/patología , Apoptosis , Formación de Anticuerpos , Línea Celular Tumoral , Carcinoma Epitelial de Ovario , Carcinoma Endometrioide/patología , Inmunoglobulina A/metabolismo , Adenocarcinoma de Células Claras/patología , Sinteninas/metabolismo
2.
Front Immunol ; 13: 943354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979372

RESUMEN

Regulatory T cells (Tregs) are responsible for maintaining immune homeostasis by controlling immune responses. They can be characterized by concomitant expression of FoxP3, CD25 and inhibitory receptors such as PD-1 and CTLA-4. Tregs are key players in preventing autoimmunity and are dysregulated in cancer, where they facilitate tumor immune escape. B-cell lymphoid malignancies are a group of diseases with heterogenous molecular characteristics and clinical course. Treg levels are increased in patients with B-cell lymphoid malignancies and correlate with clinical outcomes. In this review, we discuss studies investigating Treg immunobiology in B-cell lymphoid malignancies, focusing on clinical correlations, mechanisms of accumulation, phenotype, and function. Overarching trends suggest that Tregs can be induced directly by tumor cells and recruited to the tumor microenvironment where they suppress antitumor immunity to facilitate disease progression. Further, we highlight studies showing that Tregs can be modulated by novel therapeutic agents such as immune checkpoint blockade and targeted therapies. Treg disruption by novel therapeutics may beneficially restore immune competence but has been associated with occurrence of adverse events. Strategies to achieve balance between these two outcomes will be paramount in the future to improve therapeutic efficacy and safety.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Autoinmunidad , Humanos , Neoplasias/patología , Escape del Tumor , Microambiente Tumoral
3.
Front Immunol ; 11: 590072, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329575

RESUMEN

Development of chronic lymphocytic leukemia (CLL) is associated with severe immune dysfunction. T-cell exhaustion, immune checkpoint upregulation, and increase of regulatory T cells contribute to an immunosuppressive tumor microenvironment. As a result, CLL patients are severely susceptible to infectious complications that increase morbidity and mortality. CLL B-cell survival is highly dependent upon interaction with the supportive tumor microenvironment. It has been postulated that the reversal of T-cell dysfunction in CLL may be beneficial to reduce tumor burden. Previous studies have also highlighted roles for histone deacetylase 6 (HDAC6) in regulation of immune cell phenotype and function. Here, we report for the first time that HDAC6 inhibition exerts beneficial immunomodulatory effects on CLL B cells and alleviates CLL-induced immunosuppression of CLL T cells. In the Eµ-TCL1 adoptive transfer murine model, genetic silencing or inhibition of HDAC6 reduced surface expression of programmed death-ligand 1 (PD-L1) on CLL B cells and lowered interleukin-10 (IL-10) levels. This occurred concurrently with a bolstered T-cell phenotype, demonstrated by alteration of coinhibitory molecules and activation status. Analysis of mice with similar tumor burden indicated that the majority of T-cell changes elicited by silencing or inhibition of HDAC6 in vivo are likely secondary to decrease of tumor burden and immunomodulation of CLL B cells. The data reported here suggest that CLL B cell phenotype may be altered by HDAC6-mediated hyperacetylation of the chaperone heat shock protein 90 (HSP90) and subsequent inhibition of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. Based on the beneficial immunomodulatory activity of HDAC6 inhibition, we rationalized that HDAC6 inhibitors could enhance immune checkpoint blockade in CLL. Conclusively, combination treatment with ACY738 augmented the antitumor efficacy of anti-PD-1 and anti-PD-L1 monoclonal antibodies in the Eµ-TCL1 adoptive transfer murine model. These combinatorial antitumor effects coincided with an increased cytotoxic CD8+ T-cell phenotype. Taken together, these data highlight a role for HDAC inhibitors in combination with immunotherapy and provides the rationale to investigate HDAC6 inhibition together with immune checkpoint blockade for treatment of CLL patients.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Linfocitos T/efectos de los fármacos , Anciano , Animales , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Modelos Animales de Enfermedad , Femenino , Histona Desacetilasa 6/genética , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Leucemia Linfocítica Crónica de Células B/inmunología , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Linfocitos T/inmunología
4.
Blood Adv ; 4(13): 3072-3084, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32634240

RESUMEN

The in-clinic phosphatidylinositol 3-kinase (PI3K) inhibitors idelalisib (CAL-101) and duvelisib (IPI-145) have demonstrated high rates of response and progression-free survival in clinical trials of B-cell malignancies, such as chronic lymphocytic leukemia (CLL). However, a high incidence of adverse events has led to frequent discontinuations, limiting the clinical development of these inhibitors. By contrast, the dual PI3Kδ/casein kinase-1-ε (CK1ε) inhibitor umbralisib (TGR-1202) also shows high rates of response in clinical trials but has an improved safety profile with fewer severe adverse events. Toxicities typical of this class of PI3K inhibitors are largely thought to be immune mediated, but they are poorly characterized. Here, we report the effects of idelalisib, duvelisib, and umbralisib on regulatory T cells (Tregs) on normal human T cells, T cells from CLL patients, and T cells in an Eµ-TCL1 adoptive transfer mouse CLL model. Ex vivo studies revealed differential effects of these PI3K inhibitors; only umbralisib treatment sustained normal and CLL-associated FoxP3+ human Tregs. Further, although all 3 inhibitors exhibit antitumor efficacy in the Eµ-TCL1 CLL model, idelalisib- or duvelisib-treated mice displayed increased immune-mediated toxicities, impaired function, and reduced numbers of Tregs, whereas Treg number and function were preserved in umbralisib-treated CLL-bearing mice. Finally, our studies demonstrate that inhibition of CK1ε can improve CLL Treg number and function. Interestingly, CK1ε inhibition mitigated impairment of CLL Tregs by PI3K inhibitors in combination treatment. These results suggest that the improved safety profile of umbralisib is due to its role as a dual PI3Kδ/CK1ε inhibitor that preserves Treg number and function.


Asunto(s)
Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Ratones , Fosfatidilinositol 3-Quinasas/uso terapéutico
5.
Blood Adv ; 2(21): 3012-3024, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30425065

RESUMEN

Although the treatment paradigm for chronic lymphocytic leukemia (CLL) is rapidly changing, the disease remains incurable, except with allogeneic bone marrow transplantation, and resistance, relapsed disease, and partial responses persist as significant challenges. Recent studies have uncovered roles for epigenetic modification in the regulation of mechanisms contributing to malignant progression of CLL B cells. However, the extent to which epigenetic modifiers can be targeted for therapeutic benefit in CLL patients remains poorly explored. We report for the first time that expression of epigenetic modifier histone deacetylase 6 (HDAC6) is upregulated in CLL patient samples, cell lines, and euTCL1 transgenic mouse models compared with HDAC6 in normal controls. Genetic silencing of HDAC6 conferred survival benefit in euTCL1 mice. Administration of isoform-specific HDAC6 inhibitor ACY738 in the euTCL1 aging and adoptive transfer models deterred proliferation of CLL B cells, delayed disease onset via disruption of B-cell receptor signaling, and sensitized CLL B cells to apoptosis. Furthermore, coadministration of ACY738 and ibrutinib displayed synergistic cell kill against CLL cell lines and improved overall survival compared with either single agent in vivo. These results demonstrate for the first time the therapeutic efficacy of selective HDAC6 inhibition in preclinical CLL models and suggest a rationale for the clinical development of HDAC6 inhibitors for CLL treatment, either alone or in combination with Bruton tyrosine kinase inhibition.


Asunto(s)
Silenciador del Gen , Histona Desacetilasa 6/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Adenina/análogos & derivados , Animales , Antígenos CD19/metabolismo , Apoptosis/efectos de los fármacos , Linfocitos B/citología , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/genética , Humanos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/mortalidad , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones SCID , Piperidinas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Tasa de Supervivencia
6.
Blood Adv ; 1(21): 1867-1875, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-29296833

RESUMEN

Approved therapies that target the B-cell receptor (BCR) signaling pathway, such as ibrutinib and idelalisib, are known to show activity in chronic lymphocytic leukemia (CLL) via their direct effects on crucial survival pathways in malignant B cells. However, these therapies also have effects on T cells in CLL by mediating toxicity and possibly controlling disease. By focusing on the effects of BCR signaling inhibitors on the T-cell compartment, we may gain new insights into the comprehensive biological outcomes of systemic treatment to further understand mechanisms of drug efficacy, predict the toxicity or adverse events, and identify novel combinatorial therapies. Here, we review T-cell abnormalities in preclinical models and patient samples, finding that CLL T cells orchestrate immune dysfunction and immune-related complications. We then continue to address the effects of clinically available small molecule BCR signaling inhibitors on the immune cells, especially T cells, in the context of concomitant immune-mediated adverse events and implications for future treatment strategies. Our review suggests potentially novel mechanisms of action related to BCR inhibitors, providing a rationale to extend their use to other cancers and autoimmune disorders.

7.
J Leukoc Biol ; 102(2): 475-486, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28550123

RESUMEN

Epigenetic changes in chromatin structure have been recently associated with the deregulated expression of critical genes in normal and malignant processes. HDAC11, the newest member of the HDAC family of enzymes, functions as a negative regulator of IL-10 expression in APCs, as previously described by our lab. However, at the present time, its role in other hematopoietic cells, specifically in neutrophils, has not been fully explored. In this report, for the first time, we present a novel physiologic role for HDAC11 as a multifaceted regulator of neutrophils. Thus far, we have been able to demonstrate a lineage-restricted overexpression of HDAC11 in neutrophils and committed neutrophil precursors (promyelocytes). Additionally, we show that HDAC11 appears to associate with the transcription machinery, possibly regulating the expression of inflammatory and migratory genes in neutrophils. Given the prevalence of neutrophils in the peripheral circulation and their central role in the first line of defense, our results highlight a unique and novel role for HDAC11. With the consideration of the emergence of new, selective HDAC11 inhibitors, we believe that our findings will have significant implications in a wide range of diseases spanning malignancies, autoimmunity, and inflammation.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Hematopoyesis/inmunología , Histona Desacetilasas/inmunología , Neutrófilos/enzimología , Animales , Inmunoprecipitación de Cromatina , Epigénesis Genética , Citometría de Flujo , Immunoblotting , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA