Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 193(12): 820, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34792670

RESUMEN

This paper assesses the long-term combined effects of land use (LU) and climate change on river hydrology and water scarcity of two rivers of the Western Ghats of India. The historical LU changes were studied for four decades (1988-2016) using the maximum likelihood algorithm and the long-term LU (2016-2075) was estimated using the Dyna-CLUE prediction model. Five General Circulation Models (GCMs) were utilized to assess the effects of climate change (CC) and the Soil and Water Assessment Tool (SWAT) model was used for hydrological modeling of the two river catchments. To characterize granular effects of LU and CC on regional hydrology, a scenario approach was adopted and three scenarios depicting near-future (2006-2040), mid-future (2041-2070), and far-future (2071-2100) based on climate were established. The present rate of LU change indicated a reduction in forest cover by 20% and an increase in urbanized areas by 9.5% between 1988 and 2016. It was estimated that forest cover in the catchments may be expected to halve compared to the present-day LU (55% in 2016 to 23% in 2075), along with large-scale conversion to agricultural lands (13.5% in 2016 to 49.5% in 2075). As a result of changes to LU and forecasted climate, it was found that rivers in the Western Ghats of India might face scarcity of fresh water in the next two decades until the year 2040. However, because of large-scale LU conversion toward the year 2050, streamflow in rivers might increase as high as 70.94% at certain times of the year. Although an increase in streamflow is perceived favorable, the streamflow changes during summer and winter may be expected to affect the cropping calendar and crop yield. The changes to streamflow were also linked to a 4.2% increase in ecologically sensitive wetlands of the Aghanashini river catchment.


Asunto(s)
Cambio Climático , Ríos , Monitoreo del Ambiente , Hidrología , India , Inseguridad Hídrica
2.
Sci Total Environ ; 855: 158860, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36126712

RESUMEN

Droughts are one of the most devastating natural disasters. Droughts can co-exist in different forms (e.g. meteorological, hydrological, and agricultural) as concurrent droughts. Such concurrent droughts can have far reaching implications for crop yield and global food security. The present study aims to assess global concurrent drought traits and their effects on maize yield under climate change. The standardized indices of precipitation, runoff, and soil moisture incorporated as multivariate standardized drought index (MSDI) using copula functions are used to quantify the concurrent droughts. The ensemble data of several General Circulation Models (GCMs) considering the high emission scenario of Coupled Model Intercomparison Project phase 6 (CMIP6) are utilized. Applying run theory on a time series (1950-2100) of MSDI values, the duration, severity, areal coverage, and average areal intensity of concurrent droughts are computed. The temporal evolution of drought duration and severity are compared among historical (1950-2014), near future (2021-2060), and far future (2061-2100) timeframes. The results indicate that the most vulnerable regions in the late 21st century are Central America, the Mediterranean, Southern Africa, and the Amazon basin. The indices and spatial extent of the individual droughts are used as predictor variables to predict the country-level crop index of the top seven producers of maize. The historical dynamics between maize yield and different drought forms are projected using XGBoost (Extreme Gradient Boosting) algorithms. The future temporal changes in drought-crop yield dynamics are tracked using probabilities of various drought forms under yield-loss conditions. The conditional concurrent drought probabilities are as high as 84 %, 64 %, and 37 % in France, Mexico, and Brazil, revealing that concurrent drought affects the maize yield tremendously in the far future. This approach of applying statistical and soft-computing techniques could aid in drought mitigation under changing climatic conditions.


Asunto(s)
Sequías , Zea mays , Cambio Climático , Meteorología , Agricultura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA