Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Carcinogenesis ; 37(11): 1027-1040, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27543608

RESUMEN

Mouse double minute 2 (MDM2) protein functionally inactivates the tumor suppressor p53 in human cancer. Conventional MDM2 inhibitors provide limited clinical application as they interfere only with the MDM2-p53 interaction to release p53 from MDM2 sequestration but do not prevent activated p53 from transcriptionally inducing MDM2 expression. Here, we report a rationally synthesized chalcone-based pyrido[ b ]indole, CPI-7c, as a unique small-molecule inhibitor of MDM2, which not only inhibited MDM2-p53 interaction but also promoted MDM2 degradation. CPI-7c bound to both RING and N-terminal domains of MDM2 to promote its ubiquitin-mediated degradation and p53 stabilization. CPI-7c-induced p53 directly recruited to the promoters of DR4 and DR5 genes and enhanced their expression, resulting in sensitization of TNF-related apoptosis-inducing ligand (TRAIL)-resistant cancer cells toward TRAIL-induced apoptosis. Collectively, we identified CPI-7c as a novel small-molecule inhibitor of MDM2 with a unique two-prong mechanism of action that sensitized TRAIL-resistant cancer cells to apoptosis by modulating the MDM2-p53-DR4/DR5 pathway.


Asunto(s)
Antineoplásicos/farmacología , Carbolinas/farmacología , Resistencia a Antineoplásicos , Propiofenonas/farmacología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Carbolinas/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Terapia Molecular Dirigida , Regiones Promotoras Genéticas , Propiofenonas/química , Unión Proteica , Estabilidad Proteica , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación/efectos de los fármacos , Regulación hacia Arriba
2.
Int J Cancer ; 136(9): 1991-2000, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24615680

RESUMEN

Although tumor heterogeneity is widely accepted, the existence of cancer stem cells (CSCs) and their proposed role in tumor maintenance has always been challenged and remains a matter of debate. Recently, a path-breaking chapter was added to this saga when three independent groups reported the in vivo existence of CSCs in brain, skin and intestinal tumors using lineage-tracing and thus strengthens the CSC concept; even though certain fundamental caveats are always associated with lineage-tracing approach. In principle, the CSC hypothesis proposes that similar to normal stem cells, CSCs maintain self renewal and multilineage differentiation property and are found at the central echelon of cellular hierarchy present within tumors. However, these cells differ from their normal counterpart by maintaining their malignant potential, alteration of genomic integrity, epigenetic identity and the expression of specific surface protein profiles. As CSCs are highly resistant to chemotherapeutics, they are thought to be a crucial factor involved in tumor relapse and superficially appear as the ultimate therapeutic target. However, even that is not the end; further complication is attributed by reports of bidirectional regeneration mechanism for CSCs, one from their self-renewal capability and another from the recently proposed concept of dynamic equilibrium between CSCs and non-CSCs via their interconversion. This phenomenon has currently added a new layer of complexity in understanding the biology of tumor heterogeneity. In-spite of its associated controversies, this area has rapidly emerged as the center of attention for researchers and clinicians, because of the conceptual framework it provides towards devising new therapies.


Asunto(s)
Neoplasias/patología , Células Madre Neoplásicas/patología , Animales , Diferenciación Celular/fisiología , Humanos
3.
Sci Rep ; 12(1): 4059, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260696

RESUMEN

Increased ribosome biogenesis is a distinguishing feature of cancer cells, and small molecule inhibitors of ribosome biogenesis are currently in clinical trials as single agent therapy. It has been previously shown that inhibiting ribosome biogenesis through the inhibition of nuclear export of ribosomal subunits sensitizes tumor cells to radiotherapy. In this study, the radiosensitizing potential of CX-5461, a small molecule inhibitor of RNA polymerase I, was tested. Radiosensitization was measured by clonogenic survival assay in a panel of four tumor cell lines derived from three different tumor types commonly treated with radiation. 50 nM CX-5461 radiosensitized PANC-1, U251, HeLa, and PSN1 cells with dose enhancement factors in the range of 1.2-1.3. However, 50 nM CX-5461 was not sufficient to inhibit 45S transcription alone or in combination with radiation. The mechanism of cell death with the combination of CX-5461 and radiation occurred through mitotic catastrophe and not apoptosis. CX-5461 inhibited the repair and/or enhanced the initial levels of radiation-induced DNA double strand breaks. Understanding the mechanism of CX-5461-induced radiosensitization should be of value in the potential application of the CX-5461/radiotherapy combination in cancer treatment.


Asunto(s)
Benzotiazoles , Naftiridinas , ARN Polimerasa I , Fármacos Sensibilizantes a Radiaciones , Apoptosis , Benzotiazoles/farmacología , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Daño del ADN , Humanos , Naftiridinas/farmacología , ARN Polimerasa I/antagonistas & inhibidores , Fármacos Sensibilizantes a Radiaciones/farmacología
4.
Cell Death Dis ; 12(5): 464, 2021 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-33966046

RESUMEN

Chemokine receptor CXCR4 overexpression in solid tumors has been strongly associated with poor prognosis and adverse clinical outcome. However, blockade of CXCL12-CXCR4 signaling axis by inhibitors like Nox-A12, FDA approved CXCR4 inhibitor drug AMD3100 have shown limited clinical success in cancer treatment. Therefore, exclusive contribution of CXCR4-CXCL12 signaling in pro-tumorigenic function is questionable. In our pursuit to understand the impact of chemokine signaling in carcinogenesis, we reveal that instead of CXCR4-CXCL12 signaling, presence of CXCR4 intracellular protein augments paclitaxel resistance and pro-tumorigenic functions. In search of pro-apoptotic mechanisms for CXCR4 mediated drug resistance; we discover that DR5 is a new selective target of CXCR4 in breast and colon cancer. Further, we detect that CXCR4 directs the differential recruitment of transcription factors p53 and YY1 to the promoter of DR5 in course of its transcriptional repression. Remarkably, inhibiting CXCR4-ligand-mediated signals completely fails to block the above phenotype. Overexpression of different mutant versions of CXCR4 lacking signal transduction capabilities also result in marked downregulation of DR5 expression in colon cancer indeed confirms the reverse relationship between DR5 and intracellular CXCR4 protein expression. Irrespective of CXCR4 surface expression, by utilizing stable gain and loss of function approaches, we observe that intracellular CXCR4 protein selectively resists and sensitizes colon cancer cells against paclitaxel therapy in vitro and in vivo. Finally, performing TCGA data mining and using human breast cancer patient samples, we demonstrate that expression of CXCR4 and DR5 are inversely regulated. Together, our data suggest that targeting CXCR4 intracellular protein may be critical to dampen the pro-tumorigenic functions of CXCR4.


Asunto(s)
Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores CXCR4/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Línea Celular Tumoral , Femenino , Humanos
5.
Epigenetics ; 16(2): 144-161, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32635858

RESUMEN

Drug resistance is one of the trademark features of Cancer Stem Cells (CSCs). We and others have recently shown that paucity of functional death receptors (DR4/5) on the cell surface of tumour cells is one of the major reasons for drug resistance, but their involvement in the context of in CSCs is poorly understood. By harnessing CSC specific cytotoxic function of salinomycin, we discovered a critical role of epigenetic modulator EZH2 in regulating the expression of DRs in colon CSCs. Our unbiased proteome profiler array approach followed by ChIP analysis of salinomycin treated cells indicated that the expression of DRs, especially DR4 is epigenetically repressed in colon CSCs. Concurrently, EZH2 knockdown demonstrated increased expression of DR4/DR5, significant reduction of CSC phenotypes such as spheroid formation in-vitro and tumorigenic potential in-vivo in colon cancer. TCGA data analysis of human colon cancer clinical samples shows strong inverse correlation between EZH2 and DR4. Taken together, this study provides an insight about epigenetic regulation of DR4 in colon CSCs and advocates that drug-resistant colon cancer can be therapeutically targeted by combining TRAIL and small molecule EZH2 inhibitors.


Asunto(s)
Neoplasias del Colon , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Células Madre Neoplásicas , Piranos/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Apoptosis , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Metilación de ADN , Epigénesis Genética , Humanos , Células Madre Neoplásicas/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética
6.
Mol Cancer Ther ; 16(9): 1791-1805, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28500231

RESUMEN

Molecular hybridization of different pharmacophores to tackle both tumor growth and metastasis by a single molecular entity can be very effective and unique if the hybrid product shows drug-like properties. Here, we report synthesis and discovery of a novel small-molecule inhibitor of PP2A-ß-catenin signaling that limits both in vivo tumor growth and metastasis. Our molecular hybridization approach resulted in cancer cell selectivity and improved drug-like properties of the molecule. Inhibiting PP2A and ß-catenin interaction by selectively engaging PR55α-binding site, our most potent small-molecule inhibitor diminished the expression of active ß-catenin and its target proteins c-Myc and Cyclin D1. Furthermore, it promotes robust E-cadherin upregulation on the cell surface and increases ß-catenin-E-Cadherin association, which may prevent dissemination of metastatic cells. Altogether, we report synthesis and mechanistic insight of a novel drug-like molecule to differentially target ß-catenin functionality via interacting with a particular subunit of PP2A. Mol Cancer Ther; 16(9); 1791-805. ©2017 AACR.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Neoplasias/metabolismo , Proteína Fosfatasa 2/metabolismo , Transducción de Señal/efectos de los fármacos , beta Catenina/metabolismo , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Chalconas/química , Chalconas/farmacología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Modelos Moleculares , Conformación Molecular , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Fosforilación , Unión Proteica , Proteína Fosfatasa 2/química , Semicarbazonas/química , Semicarbazonas/farmacología , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/química
7.
Sci Rep ; 5: 18457, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26672742

RESUMEN

Major challenges for current therapeutic strategies against breast cancer are associated with drug-induced toxicities. Considering the immense potential of bioactive phytochemicals to deliver non-toxic, efficient anti-cancer therapeutics, we performed bio-guided fractionation of Eclipta alba extract and discovered that particularly the chloroform fraction of Eclipta alba (CFEA) is selectively inducing cytotoxicity to breast cancer cells over non-tumorigenic breast epithelial cells. Our unbiased mechanistic hunt revealed that CFEA specifically activates the intrinsic apoptotic pathway by disrupting the mitochondrial membrane potential, upregulating Hsp60 and downregulating the expression of anti-apoptotic protein XIAP. By utilizing Hsp60 specific siRNA, we identified a novel pro-apoptotic role of Hsp60 and uncovered that following CFEA treatment, upregulated Hsp60 is localized in the endoplasmic reticulum (ER). To our knowledge, this is the first evidence of ER specific localization of Hsp60 during cancer cell apoptosis. Further, our LC-MS approach identified that luteolin is mainly attributed for its anti-cancer activities. Moreover, oral administration of CFEA not only offers potential anti-breast cancer effects in-vivo but also mitigates tumor induced hepato-renal toxicity. Together, our studies offer novel mechanistic insight into the CFEA mediated inhibition of breast cancer and may potentially open up new avenues for further translational research.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Chaperonina 60/metabolismo , Eclipta/química , Retículo Endoplásmico/metabolismo , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Animales , Western Blotting , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chaperonina 60/genética , Cloroformo/química , Femenino , Humanos , Células MCF-7 , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos BALB C , Microscopía Confocal , Fitoterapia/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
8.
Discoveries (Craiova) ; 2(3): e26, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32309554

RESUMEN

Seminal discoveries have established the role of complex tumor microenvironment (TME) in cancer progression; and later on also uncovered that vesiculation is an integral part of intercellular communication among various cell types in coordinating the tumor assembly in a dynamic manner. Exosomes are small membrane bound endosomal vesicles, which are classically known for their role in discarding cellular wastes; however, recent reports underlined their novel role in malignancy by their release from cells into the TME. Since then, the role of exosomes have been a subject of increasing interest, as exosome mediated intercellular communications offer a novel reciprocal relationship between cancer and stromal cells within the TME and modulate the fate and function of the recipient cells to finally shape the tumor progression. Exosomes are characterised by different features including size, content and mode of delivery; and its cargo delivers interesting bioactive components in the form of proteins, miRNAs or other molecules to the target cell. In the pursuit of further study of exosomes, it was found that with the help of its distinct bioactive components, exosomes specifically regulate tumor growth, angiogenesis, metastasis as well as drug resistance properties. In fact, it acts as a bridge between different signaling networks, present inside the spatially distant cells of the heterogeneous tumor population. In the current endeavour, we have highlighted the role of exosomes in modulating the intercellular crosstalk during tumor growth and progression, and proposed certain novel roles of exosomes to address the few enigmatic questions of cancer cell biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA