Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
2.
Retrovirology ; 18(1): 6, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622348

RESUMEN

BACKGROUND: The Human T-cell Lymphotropic Virus Type-1 (HTLV-1) is a blood-borne pathogen and etiological agent of Adult T-cell Leukemia/Lymphoma (ATLL) and HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HTLV-1 has currently infected up to 10 million globally with highly endemic areas in Japan, Africa, the Caribbean and South America. We have previously shown that Extracellular Vesicles (EVs) enhance HTLV-1 transmission by promoting cell-cell contact. RESULTS: Here, we separated EVs into subpopulations using differential ultracentrifugation (DUC) at speeds of 2 k (2000×g), 10 k (10,000×g), and 100 k (100,000×g) from infected cell supernatants. Proteomic analysis revealed that EVs contain the highest viral/host protein abundance in the 2 k subpopulation (2 k > 10 k > 100 k). The 2 k and 10 k populations contained viral proteins (i.e., p19 and Tax), and autophagy proteins (i.e., LC3 and p62) suggesting presence of autophagosomes as well as core histones. Interestingly, the use of 2 k EVs in an angiogenesis assay (mesenchymal stem cells + endothelial cells) caused deterioration of vascular-like-tubules. Cells commonly associated with the neurovascular unit (i.e., astrocytes, neurons, and macrophages) in the blood-brain barrier (BBB) showed that HTLV-1 EVs may induce expression of cytokines involved in migration (i.e., IL-8; 100 k > 2 k > 10 k) from astrocytes and monocyte-derived macrophages (i.e., IL-8; 2 k > 10 k). Finally, we found that EVs were able to promote cell-cell contact and viral transmission in monocytic cell-derived dendritic cell. The EVs from both 2 k and 10 k increased HTLV-1 spread in a humanized mouse model, as evidenced by an increase in proviral DNA and RNA in the Blood, Lymph Node, and Spleen. CONCLUSIONS: Altogether, these data suggest that various EV subpopulations induce cytokine expression, tissue damage, and viral spread.


Asunto(s)
Células Endoteliales/virología , Vesículas Extracelulares/virología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Animales , Comunicación Celular , Citocinas/análisis , Citocinas/genética , Citocinas/inmunología , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/fisiología , Femenino , Infecciones por HTLV-I/virología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Proteómica , Células THP-1 , Células U937
3.
PLoS Pathog ; 15(2): e1007589, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30818370

RESUMEN

Human T Lymphotropic virus (HTLV) infection can persist in individuals resulting, at least in part, from viral escape of the innate immunity, including inhibition of type I interferon response in infected T-cells. Plasmacytoid dendritic cells (pDCs) are known to bypass viral escape by their robust type I interferon production. Here, we demonstrated that pDCs produce type I interferons upon physical cell contact with HTLV-infected cells, yet pDC activation inversely correlates with the ability of the HTLV-producing cells to transmit infection. We show that pDCs sense surface associated-HTLV present with glycan-rich structure referred to as biofilm-like structure, which thus represents a newly described viral structure triggering the antiviral response by pDCs. Consistently, heparan sulfate proteoglycans and especially the cell surface pattern of terminal ß-galactoside glycosylation, modulate the transmission of the immunostimulatory RNA to pDCs. Altogether, our results uncover a function of virus-containing cell surface-associated glycosylated structures in the activation of innate immunity.


Asunto(s)
Células Dendríticas/fisiología , Infecciones por HTLV-I/metabolismo , Citocinas , Galactósidos/metabolismo , Glicosilación , Infecciones por HTLV-I/inmunología , Virus Linfotrópico T Tipo 1 Humano/inmunología , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Virus Linfotrópico T Tipo 2 Humano/inmunología , Virus Linfotrópico T Tipo 2 Humano/patogenicidad , Humanos , Inmunidad Innata/fisiología , Interferón Tipo I/inmunología , Interferón-alfa/inmunología , Interferón-alfa/metabolismo , Células Jurkat , Linfocitos T/inmunología , Linfocitos T/fisiología
4.
PLoS Pathog ; 15(10): e1008093, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31600344

RESUMEN

ISG20 is a broad spectrum antiviral protein thought to directly degrade viral RNA. However, this mechanism of inhibition remains controversial. Using the Vesicular Stomatitis Virus (VSV) as a model RNA virus, we show here that ISG20 interferes with viral replication by decreasing protein synthesis in the absence of RNA degradation. Importantly, we demonstrate that ISG20 exerts a translational control over a large panel of non-self RNA substrates including those originating from transfected DNA, while sparing endogenous transcripts. This activity correlates with the protein's ability to localize in cytoplasmic processing bodies. Finally, these functions are conserved in the ISG20 murine ortholog, whose genetic ablation results in mice with increased susceptibility to viral infection. Overall, our results posit ISG20 as an important defense factor able to discriminate the self/non-self origins of the RNA through translation modulation.


Asunto(s)
Antivirales/farmacología , Exorribonucleasas/farmacología , Biosíntesis de Proteínas , ARN Viral/metabolismo , Estomatitis Vesicular/inmunología , Vesiculovirus/inmunología , Replicación Viral/efectos de los fármacos , Animales , Exorribonucleasas/fisiología , Células HeLa , Humanos , Ratones , Ratones Noqueados , Estabilidad del ARN , ARN Viral/genética , Estomatitis Vesicular/tratamiento farmacológico , Estomatitis Vesicular/virología , Vesiculovirus/efectos de los fármacos
5.
Retrovirology ; 16(1): 45, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31870397

RESUMEN

Human T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T-cell leukemia/lymphoma (ATLL) and the demyelinating neuroinflammatory disease known as HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), was the first human retrovirus to be discovered. T-cells, which represent the main reservoir for HTLV-1, have been the main focus of studies aimed at understanding viral transmission and disease progression. However, other cell types such as myeloid cells are also target of HTLV-1 infection and display functional alterations as a consequence. In this work, we review the current investigations that shed light on infection, transmission and functional alterations subsequent to HTLV-1 infection of the different myeloid cells types, and we highlight the lack of knowledge in this regard.


Asunto(s)
Infecciones por HTLV-I/transmisión , Infecciones por HTLV-I/virología , Células Mieloides/inmunología , Células Mieloides/virología , Animales , Infecciones por HTLV-I/inmunología , Virus Linfotrópico T Tipo 1 Humano , Humanos , Leucemia-Linfoma de Células T del Adulto/inmunología , Leucemia-Linfoma de Células T del Adulto/virología , Macrófagos/inmunología , Macrófagos/virología , Linfocitos T/inmunología , Linfocitos T/virología
6.
Retrovirology ; 16(1): 41, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31843020

RESUMEN

Few years after HTLV-1 identification and isolation in humans, STLV-1, its simian counterpart, was discovered. It then became clear that STLV-1 is present almost in all simian species. Subsequent molecular epidemiology studies demonstrated that, apart from HTLV-1 subtype A, all human subtypes have a simian homolog. As HTLV-1, STLV-1 is the etiological agent of ATL, while no case of TSP/HAM has been described. Given its similarities with HTLV-1, STLV-1 represents a unique tool used for performing clinical studies, vaccine studies as well as basic science.


Asunto(s)
Infecciones por Deltaretrovirus/virología , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Virus Linfotrópico T Tipo 1 de los Simios/genética , Virus Linfotrópico T Tipo 1 de los Simios/patogenicidad , Animales , Infecciones por Deltaretrovirus/transmisión , Modelos Animales de Enfermedad , Femenino , Infecciones por HTLV-I/virología , Humanos , Masculino , Filogenia , Primates/virología
7.
PLoS Pathog ; 13(4): e1006353, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28426803

RESUMEN

Human T lymphotropic Virus type 1 (HTLV-1) is the etiological agent of Adult T cell Leukemia/Lymphoma (ATLL) and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). Both CD4+ T-cells and dendritic cells (DCs) infected with HTLV-1 are found in peripheral blood from HTLV-1 carriers. We previously demonstrated that monocyte-derived IL-4 DCs are more susceptible to HTLV-1 infection than autologous primary T-cells, suggesting that DC infection precedes T-cell infection. However, during blood transmission, breast-feeding or sexual transmission, HTLV-1 may encounter different DC subsets present in the blood, the intestinal or genital mucosa respectively. These different contacts may impact HTLV-1 ability to infect DCs and its subsequent transfer to T-cells. Using in vitro monocyte-derived IL-4 DCs, TGF-ß DCs and IFN-α DCs that mimic DCs contacting HTLV-1 in vivo, we show here that despite their increased ability to capture HTLV-1 virions, IFN-α DCs restrict HTLV-1 productive infection. Surprisingly, we then demonstrate that it is not due to the antiviral activity of type-I interferon produced by IFN-α DCs, but that it is likely to be linked to a distinct trafficking route of HTLV-1 in IL-4 DCs vs. IFN-α DCs. Finally, we demonstrate that, in contrast to IL-4 DCs, IFN-α DCs are impaired in their capacity to transfer HTLV-1 to CD4 T-cells, both after viral capture and trans-infection and after their productive infection. In conclusion, the nature of the DCs encountered by HTLV-1 upon primo-infection and the viral trafficking route through the vesicular pathway of these cells determine the efficiency of viral transmission to T-cells, which may condition the fate of infection.


Asunto(s)
Antivirales/farmacología , Citocinas/inmunología , Células Dendríticas/inmunología , Infecciones por HTLV-I/inmunología , Virus Linfotrópico T Tipo 1 Humano/inmunología , Paraparesia Espástica Tropical/inmunología , Adulto , Células Dendríticas/virología , Infecciones por HTLV-I/transmisión , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Virus Linfotrópico T Tipo 1 Humano/fisiología , Humanos , Interferón Tipo I/inmunología , Modelos Biológicos , Paraparesia Espástica Tropical/patología , Paraparesia Espástica Tropical/virología , Linfocitos T/inmunología , Linfocitos T/virología
9.
J Virol ; 90(17): 7607-17, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27334587

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1) are complex retroviruses mainly infecting CD4(+) T lymphocytes. In addition, antigen-presenting cells such as dendritic cells (DCs) are targeted in vivo by both viruses, although to a lesser extent. Interaction of HIV-1 with DCs plays a key role in viral dissemination from the mucosa to CD4(+) T lymphocytes present in lymphoid organs. While similar mechanisms may occur for HTLV-1 as well, most HTLV-1 data were obtained from T-cell studies, and little is known regarding the trafficking of this virus in DCs. We first compared the efficiency of cell-free versus cell-associated viral sources of both retroviruses at infecting DCs. We showed that both HIV-1 and HTLV-1 cell-free particles are poorly efficient at productively infecting DCs, except when DC-SIGN has been engaged. Furthermore, while SAMHD-1 accounts for restriction of cell-free HIV-1 infection, it is not involved in HTLV-1 restriction. In addition, cell-free viruses lead mainly to a nonproductive DC infection, leading to trans-infection of T-cells, a process important for HIV-1 spread but not for that of HTLV-1. Finally, we show that T-DC cell-to-cell transfer implies viral trafficking in vesicles that may both increase productive infection of DCs ("cis-infection") and allow viral escape from immune surveillance. Altogether, these observations allowed us to draw a model of HTLV-1 and HIV-1 trafficking in DCs.


Asunto(s)
VIH-1/fisiología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Internalización del Virus , Liberación del Virus , Transporte Biológico , Linfocitos T CD4-Positivos/virología , Células Dendríticas/virología , Humanos , Modelos Biológicos , Replicación Viral
10.
Blood ; 126(9): 1052-3, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26316613

RESUMEN

In this issue of Blood, Sugata et al report that vaccination against human T-cell leukemia virus type 1 (HTLV-1) basic leucine zipper (bZIP) factor (HBZ) could be used for immunotherapy in adult T-cell leukemia-lymphoma (ATL) patients.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Productos del Gen tax/inmunología , Virus Linfotrópico T Tipo 1 Humano/inmunología , Leucemia-Linfoma de Células T del Adulto/prevención & control , Linfocitos T Citotóxicos/inmunología , Vacunas Sintéticas/inmunología , Proteínas Virales/inmunología , Animales , Humanos
11.
J Virol ; 89(20): 10580-90, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26269171

RESUMEN

UNLABELLED: Human T-cell leukemia virus type 1 (HTLV-1)-infected CD4(+) T cells and dendritic cells (DCs) are present in peripheral blood from HTLV-1 carriers. While T-cell infection requires cell-cell contact, DCs might be infected with cell-free virus, at least in vitro. However, a thorough comparison of the susceptibilities of the two cell types to HTLV-1 infection using cell-associated and cell-free viral sources has not been performed. We first determined that human primary monocyte-derived dendritic cells (MDDCs) were more susceptible to HTLV-1 infection than their autologous lymphocyte counterparts after contact with chronically infected cells. Next, a comparison of infection efficiency using nonconcentrated or concentrated supernatants from infected cells as well as purified viral biofilm was performed. Integrated provirus was found after exposure of MDDCs or primary lymphocytes to viral biofilm but not to a viral supernatant. Using a large series of primary cell samples (n = 21), we demonstrated a higher proviral load in MDDCs exposed to viral biofilm than in lymphocytes. This higher susceptibility is correlated to a higher expression of neuropilin-1 on MDDCs than on autologous activated T lymphocytes. Moreover, we show that MDDCs infected with viral biofilm can transmit the virus to lymphocytes. In conclusion, MDDCs are more susceptible to HTLV-1 infection than autologous lymphocytes in vitro, supporting a model in which DC infection might represent an important step during primo-infection in vivo. IMPORTANCE: HTLV-1 is able to infect several cell types, but viral DNA is mainly found in T lymphocytes in vivo. This supports a model in which T lymphocytes are the main target of infection. However, during the primo-infection of new individuals, incoming viruses might first encounter dendritic cells (DCs), the specialized immune cells responsible for the antiviral response of the host. HTLV-1 cell-free purified viruses can infect dendritic cells in vitro, while T-cell infection is restricted to cell-to-cell transmission. In order to understand the sequence of HTLV-1 dissemination, we undertook a direct comparison of the susceptibilities of the two cell types using cell-associated and cell-free viral sources. We report here that MDDCs are more susceptible to HTLV-1 infection than autologous lymphocytes in vitro and are able to efficiently transmit the virus to lymphocytes. Our results suggest that DCs may represent a true viral reservoir, as the first cell type to be infected in vivo.


Asunto(s)
Células Dendríticas/virología , Interacciones Huésped-Patógeno/inmunología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Linfocitos T/virología , Línea Celular , Técnicas de Cocultivo , Células Dendríticas/inmunología , Expresión Génica , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Humanos , Células Jurkat , Neuropilina-1/genética , Neuropilina-1/inmunología , Especificidad de Órganos , Cultivo Primario de Células , Transducción de Señal , Linfocitos T/inmunología , Carga Viral/fisiología , Replicación Viral/fisiología
12.
J Virol ; 89(15): 8092-5, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25995252

RESUMEN

Human T-cell lymphotropic virus type 1 (HTLV-1)-induced adult T-cell leukemia/lymphoma is an aggressive malignancy. HTLV-2 is genetically related to HTLV-1 but does not cause any malignant disease. HTLV-1 Tax transactivator (Tax-1) contributes to leukemogenesis via NF-κB. We describe transgenic Drosophila models expressing Tax in the compound eye and plasmatocytes. We demonstrate that Tax-1 but not Tax-2 induces ommatidial perturbation and increased plasmatocyte proliferation and that the eye phenotype is dependent on Kenny (IKKγ/NEMO), thus validating this new in vivo model.


Asunto(s)
Transformación Celular Viral , Drosophila melanogaster/virología , Productos del Gen tax/metabolismo , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/fisiología , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ojo/patología , Ojo/virología , Productos del Gen tax/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Virus Linfotrópico T Tipo 2 Humano/genética , Virus Linfotrópico T Tipo 2 Humano/metabolismo , Humanos
13.
J Virol ; 89(2): 931-51, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25355890

RESUMEN

UNLABELLED: Human T-cell lymphotropic virus type 1 (HTLV-1) and HTLV-2 encode auxiliary proteins that play important roles in viral replication, viral latency, and immune escape. The presence of auxiliary protein-encoding open reading frames (ORFs) in HTLV-3, the latest HTLV to be discovered, is unknown. Simian T-cell lymphotropic virus type 3 (STLV-3) is almost identical to HTLV-3. Given the lack of HTLV-3-infected cell lines, we took advantage of STLV-3-infected cells and of an STLV-3 molecular clone to search for the presence of auxiliary transcripts. Using reverse transcriptase PCR (RT-PCR), we first uncovered the presence of three unknown viral mRNAs encoding putative proteins of 5, 8, and 9 kDa and confirmed the presence of the previously reported RorfII transcript. The existence of these viral mRNAs was confirmed by using splice site-specific RT-PCR with ex vivo samples. We showed that p5 is distributed throughout the cell and does not colocalize with a specific organelle. The p9 localization is similar to that of HTLV-1 p12 and induced a strong decrease in the calreticulin signal, similarly to HTLV-1 p12. Although p8, RorfII, and Rex-3 share an N-terminal sequence that is predicted to contain a nucleolar localization signal (NoLS), only p8 is found in the nucleolus. The p8 location in the nucleolus is linked to a bipartite NoLS. p8 and, to a lesser extent, p9 repressed viral expression but did not alter Rex-3-dependent mRNA export. Using a transformation assay, we finally showed that none of the STLV-3 auxiliary proteins had the ability to induce colony formation, while both Tax-3 and antisense protein of HTLV-3 (APH-3) promoted cellular transformation. Altogether, these results complete the characterization of the newly described primate T-lymphotropic virus type 3 (PTLV-3). IMPORTANCE: Together with their simian counterparts, HTLVs form the primate T-lymphotropic viruses. HTLVs arose from interspecies transmission between nonhuman primates and humans. HTLV-1 and HTLV-2 encode auxiliary proteins that play important roles in viral replication, viral latency, and immune escape. The presence of ORFs encoding auxiliary proteins in HTLV-3 or STLV-3 genomes was unknown. Using in silico analyses, ex vivo samples, or in vitro experiments, we have uncovered the presence of 3 previously unknown viral mRNAs encoding putative proteins and confirmed the presence of a previously reported viral transcript. We characterized the intracellular localization of the four proteins. We showed that two of these proteins repress viral expression but that none of them have the ability to induce colony formation. However, both Tax and the antisense protein APH-3 promote cell transformation. Our results allowed us to characterize 4 new retroviral proteins for the first time.


Asunto(s)
Perfilación de la Expresión Génica , Virus Linfotrópico T Tipo 3 de los Simios/genética , Virus Linfotrópico T Tipo 3 de los Simios/fisiología , Proteínas Virales/análisis , Proteínas Virales/genética , Animales , Línea Celular , Núcleo Celular/química , Citosol/química , Humanos , Peso Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Virales/química
14.
PLoS Pathog ; 10(2): e1003917, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586148

RESUMEN

Efficient HTLV-1 viral transmission occurs through cell-to-cell contacts. The Tax viral transcriptional activator protein facilitates this process. Using a comparative transcriptomic analysis, we recently identified a series of genes up-regulated in HTLV-1 Tax expressing T-lymphocytes. We focused our attention towards genes that are important for cytoskeleton dynamic and thus may possibly modulate cell-to-cell contacts. We first demonstrate that Gem, a member of the small GTP-binding proteins within the Ras superfamily, is expressed both at the RNA and protein levels in Tax-expressing cells and in HTLV-1-infected cell lines. Using a series of ChIP assays, we show that Tax recruits CREB and CREB Binding Protein (CBP) onto a c-AMP Responsive Element (CRE) present in the gem promoter. This CRE sequence is required to drive Tax-activated gem transcription. Since Gem is involved in cytoskeleton remodeling, we investigated its role in infected cells motility. We show that Gem co-localizes with F-actin and is involved both in T-cell spontaneous cell migration as well as chemotaxis in the presence of SDF-1/CXCL12. Importantly, gem knock-down in HTLV-1-infected cells decreases cell migration and conjugate formation. Finally, we demonstrate that Gem plays an important role in cell-to-cell viral transmission.


Asunto(s)
Citoesqueleto/metabolismo , Virus Linfotrópico T Tipo 1 Humano , Proteínas de Unión al GTP Monoméricas/metabolismo , Linfocitos T/metabolismo , Linfocitos T/virología , Línea Celular , Quimiotaxis de Leucocito/fisiología , Inmunoprecipitación de Cromatina , Técnica del Anticuerpo Fluorescente , Regulación Viral de la Expresión Génica/fisiología , Productos del Gen tax/metabolismo , Immunoblotting , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/patología , Activación Transcripcional/fisiología , Transducción Genética
15.
J Infect Dis ; 211(3): 361-5, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25147276

RESUMEN

Of 78 Gabonese individuals who had received bites from nonhuman primates (NHPs) while hunting, 7 were infected with human T lymphotropic virus (HTLV-1). Five had been bitten by gorillas and were infected with subtype B strains; however, a 12-year-old girl who was severely bitten by a Cercopithecus nictitans was infected with a subtype D strain that was closely related to the simian T lymphotropic virus (STLV-1) that infects this monkey species. Her mother was infected with a subtype B strain. These data confirm that hunters in Africa can be infected by HTLV-1 that is closely related to the strains circulating among local NHP game. Our findings strongly suggest that a severe bite represent a risk factor for STLV-1 acquisition.


Asunto(s)
Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 Humano/clasificación , Virus Linfotrópico T Tipo 1 Humano/genética , Primates/virología , África Central , Animales , Cercopithecus/virología , Niño , Femenino , Gabón , Gorilla gorilla/virología , Haplorrinos/virología , Humanos , Masculino , Persona de Mediana Edad , Enfermedades de los Monos/virología , Filogenia
16.
J Biol Chem ; 289(32): 22284-305, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24939845

RESUMEN

Human T-lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. The HTLV-1 transactivator protein Tax controls many critical cellular pathways, including host cell DNA damage response mechanisms, cell cycle progression, and apoptosis. Extracellular vesicles called exosomes play critical roles during pathogenic viral infections as delivery vehicles for host and viral components, including proteins, mRNA, and microRNA. We hypothesized that exosomes derived from HTLV-1-infected cells contain unique host and viral proteins that may contribute to HTLV-1-induced pathogenesis. We found exosomes derived from infected cells to contain Tax protein and proinflammatory mediators as well as viral mRNA transcripts, including Tax, HBZ, and Env. Furthermore, we observed that exosomes released from HTLV-1-infected Tax-expressing cells contributed to enhanced survival of exosome-recipient cells when treated with Fas antibody. This survival was cFLIP-dependent, with Tax showing induction of NF-κB in exosome-recipient cells. Finally, IL-2-dependent CTLL-2 cells that received Tax-containing exosomes were protected from apoptosis through activation of AKT. Similar experiments with primary cultures showed protection and survival of peripheral blood mononuclear cells even in the absence of phytohemagglutinin/IL-2. Surviving cells contained more phosphorylated Rb, consistent with the role of Tax in regulation of the cell cycle. Collectively, these results suggest that exosomes may play an important role in extracellular delivery of functional HTLV-1 proteins and mRNA to recipient cells.


Asunto(s)
Productos del Gen tax/metabolismo , Virus Linfotrópico T Tipo 1 Humano/fisiología , Virus Linfotrópico T Tipo 1 Humano/patogenicidad , Línea Celular , Supervivencia Celular , Células Dendríticas/inmunología , Células Dendríticas/fisiología , Células Dendríticas/virología , Exosomas/metabolismo , Exosomas/virología , Productos del Gen tax/inmunología , Infecciones por HTLV-I/etiología , Infecciones por HTLV-I/fisiopatología , Infecciones por HTLV-I/virología , Interacciones Huésped-Patógeno , Virus Linfotrópico T Tipo 1 Humano/inmunología , Humanos , Virulencia , Receptor fas/antagonistas & inhibidores
17.
Am J Primatol ; 77(3): 309-18, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25296992

RESUMEN

The early stage of viral infection is often followed by an important increase of viral load and is generally considered to be the most at risk for pathogen transmission. Most methods quantifying the relative importance of the different stages of infection were developed for studies aimed at measuring HIV transmission in Humans. However, they cannot be transposed to animal populations in which less information is available. Here we propose a general method to quantify the importance of the early and late stages of the infection on micro-organism transmission from field studies. The method is based on a state space dynamical model parameterized using Bayesian inference. It is illustrated by a 28 years dataset in mandrills infected by Simian Immunodeficiency Virus type-1 (SIV-1) and the Simian T-Cell Lymphotropic Virus type-1 (STLV-1). For both viruses we show that transmission is predominant during the early stage of the infection (transmission ratio for SIV-1: 1.16 [0.0009; 18.15] and 9.92 [0.03; 83.8] for STLV-1). However, in terms of basic reproductive number (R0 ), which quantifies the weight of both stages in the spread of the virus, the results suggest that the epidemics of SIV-1 and STLV-1 are mainly driven by late transmissions in this population.


Asunto(s)
Infecciones por Deltaretrovirus/transmisión , Síndrome de Inmunodeficiencia Adquirida del Simio/transmisión , Virus de la Inmunodeficiencia de los Simios , Virus Linfotrópico T Tipo 1 de los Simios , Animales , Teorema de Bayes , Infecciones por Deltaretrovirus/epidemiología , Infecciones por Deltaretrovirus/veterinaria , Infecciones por Deltaretrovirus/virología , Transmisión de Enfermedad Infecciosa , Femenino , Masculino , Mandrillus , Modelos Estadísticos , Síndrome de Inmunodeficiencia Adquirida del Simio/epidemiología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral
18.
Med Sci (Paris) ; 31(6-7): 629-37, 2015.
Artículo en Francés | MEDLINE | ID: mdl-26152167

RESUMEN

HTLV-1 is the etiological agent of Adult T cell Leukemia/Lymphoma (ATLL) and of HTLV-1-Associated Myelopathy/tropical spastic paraparesis (HAM/TSP). It is mainly detected in CD4+ lymphocytes in vivo, but proviral genomes have also been detected although less frequently, in CD8+ T lymphocytes, B lymphocytes, monocytes, macrophages, dendritic cells and other non-lymphoid cells. Virus spread is highly dependent on cell-cell contact. This mode of transmission is correlated with an increased ability of infected cells to migrate, a property linked to cytoskeleton reorganization induced by the viral Tax protein. Cell-to-cell transmission relies on at least three non-exclusive molecular pathways. First, a specialized area, the "virological synapse'' (VS) promotes direct transmission of budding HTLV-1 particles into a synaptic cleft formed between infected and uninfected cells. Second, HTLV-1 particles accumulate at the plasma membrane of infected cells in a biofilm-like extracellular viral assembly that resembles a bacterial biofilm. Viral biofilm is rapidly transmitted to uninfected cells when infected cells contact target cells. Finally, membrane extensions called inter-cellular conduits facilitate HTLV-1 proteins transfer from infected to uninfected target cells, and may stabilize cell-cell contacts. The aim of this review is to summarize the molecular mechanisms of these HTLV-1 transmission pathways.


Asunto(s)
Comunicación Celular , Virus Linfotrópico T Tipo 1 Humano/fisiología , Internalización del Virus , Adulto , Animales , Biopelículas/crecimiento & desarrollo , Movimiento Celular , Polaridad Celular , Humanos , Tropismo Viral/fisiología
19.
Retrovirology ; 11: 103, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25422070

RESUMEN

BACKGROUND: Interferon induced transmembrane proteins 1, 2 and 3 (IFITMs) belong to a family of highly related antiviral factors that have been shown to interfere with a large spectrum of viruses including Filoviruses, Coronaviruses, Influenza virus, Dengue virus and HIV-1. In all these cases, the reported mechanism of antiviral inhibition indicates that the pool of IFITM proteins present in target cells blocks incoming viral particles in endosomal vesicles where they are subsequently degraded. RESULTS: In this study, we describe an additional mechanism through which IFITMs block HIV-1. In virus-producing cells, IFITMs coalesce with forming virions and are incorporated into viral particles. Expression of IFITMs during virion assembly leads to the production of virion particles of decreased infectivity that are mostly affected during entry in target cells. This mechanism of inhibition is exerted against different retroviruses and does not seem to be dependent on the type of Envelope present on retroviral particles. CONCLUSIONS: The results described here identify a novel mechanism through which IFITMs affect HIV-1 infectivity during the late phases of the viral life cycle. Put in the context of data obtained by other laboratories, these results indicate that IFITMs can target HIV at two distinct moments of its life cycle, in target cells as well as in virus-producing cells. These results raise the possibility that IFITMs could similarly affect distinct steps of the life cycle of a number of other viruses.


Asunto(s)
Antígenos de Diferenciación/metabolismo , VIH-1/inmunología , VIH-1/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Ensamble de Virus , Internalización del Virus , Antivirales/metabolismo , VIH-1/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Humanos
20.
Retrovirology ; 11: 93, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25389016

RESUMEN

BACKGROUND: The role of innate immunity in general and of type I interferon (IFN-I) in particular in HTLV-1 pathogenesis is still a matter of debate. ADAR1-p150 is an Interferon Stimulated Gene (ISG) induced by IFN-I that can edit viral RNAs. We therefore investigated whether it could play the role of an anti-HTLV factor. RESULTS: We demonstrate here that ADAR1 is also expressed in the absence of IFN stimulation in activated primary T-lymphocytes that are the natural target of this virus and in HTLV-1 or HTLV-2 chronically infected T-cells. ADAR1 expression is also increased in primary lymphocytes obtained from HTLV-1 infected individuals. We show that ADAR1 enhances HTLV-1 and HTLV-2 infection in T-lymphocytes and that this proviral effect is independent from its editing activity. ADAR1 expression suppresses IFN-α inhibitory effect on HTLV-1 and HTLV-2 and acts through the repression of PKR phosphorylation. DISCUSSION: This study demonstrates that two interferon stimulated genes, i.e. PKR and ADAR1 have opposite effects on HTLV replication in vivo. The balanced expression of those proteins could determine the fate of the viral cycle in the course of infection.


Asunto(s)
Adenosina Desaminasa/metabolismo , Interacciones Huésped-Patógeno , Virus Linfotrópico T Tipo 1 Humano/fisiología , Virus Linfotrópico T Tipo 2 Humano/fisiología , Proteínas de Unión al ARN/metabolismo , Replicación Viral , eIF-2 Quinasa/antagonistas & inhibidores , Células Cultivadas , Humanos , Inhibición Psicológica , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Linfocitos T/inmunología , Linfocitos T/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA