Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Physiol ; 191(1): 125-141, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36222581

RESUMEN

According to their lifestyle, plant pathogens are divided into biotrophic and necrotrophic organisms. Biotrophic pathogens exclusively nourish living host cells, whereas necrotrophic pathogens rapidly kill host cells and nourish cell walls and cell contents. To this end, the necrotrophic fungus Botrytis cinerea secretes large amounts of phytotoxic proteins and cell wall-degrading enzymes. However, the precise role of these proteins during infection is unknown. Here, we report on the identification and characterization of the previously unknown toxic protein hypersensitive response-inducing protein 1 (Hip1), which induces plant cell death. We found the adoption of a structurally conserved folded Alternaria alternata Alt a 1 protein structure to be a prerequisite for Hip1 to exert its necrosis-inducing activity in a host-specific manner. Localization and the induction of typical plant defense responses by Hip1 indicate recognition as a pathogen-associated molecular pattern at the plant plasma membrane. In contrast to other secreted toxic Botrytis proteins, the activity of Hip1 does not depend on the presence of the receptor-associated kinases BRI1-associated kinase 1 and suppressor of BIR1-1. Our results demonstrate that recognition of Hip1, even in the absence of obvious enzymatic or pore-forming activity, induces strong plant defense reactions eventually leading to plant cell death. Botrytis hip1 overexpression strains generated by CRISPR/Cas9 displayed enhanced infection, indicating the virulence-promoting potential of Hip1. Taken together, Hip1 induces a noncanonical defense response which might be a common feature of structurally conserved fungal proteins from the Alt a 1 family.


Asunto(s)
Botrytis , Células Vegetales , Botrytis/metabolismo , Muerte Celular , Virulencia , Membrana Celular , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
2.
Small ; 17(49): e2103603, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34674382

RESUMEN

When membrane proteins are removed from their natural environment, the quality of the membrane-solubilizing agent used is critical for preserving their native structures and functions. Nanodiscs that retain a lipid-bilayer core around membrane proteins have attracted great attention because they offer a much more native-like environment than detergent micelles. Here, two small-molecule amphiphiles with diglucose headgroups and either a hydrocarbon or a fluorocarbon hydrophobic chain are shown to directly assemble lipids and membrane proteins to form native nanodiscs rather than mixed micelles. Self-assembly of nanodiscs of increasing complexity from both defined, artificial vesicles as well as complex, cellular membranes is demonstrated. A detailed investigation of bilayer integrity and membrane-protein activity in these nanodiscs reveals gentle effects on the encapsulated bilayer core. The fluorinated amphiphile appears particularly promising because its lipophobicity results in gentle, non-perturbing interactions with the nanoscale lipid bilayer. A sequential model of nanodisc self-assembly is proposed that proceeds through perforation of the original membrane followed by saturation and complete solubilization of the bilayer. On this basis, pseudophase diagrams are established for mixtures of lipids and nanodisc-forming diglucoside amphiphiles, and the latter are used for the extraction of a broad range of membrane proteins from cellular membranes.


Asunto(s)
Membrana Dobles de Lípidos , Nanoestructuras , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana , Micelas
3.
Langmuir ; 37(6): 2111-2122, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33539092

RESUMEN

Two new surfactants, F5OM and F5DM, were designed as partially fluorinated analogues of n-dodecyl-ß-D-maltoside (DDM). The micellization properties and the morphologies of the aggregates formed by the two surfactants in water and phosphate buffer were evaluated by NMR spectroscopy, surface tension measurement, isothermal titration calorimetry, dynamic light scattering, small-angle X-ray scattering, and analytical ultracentrifugation. As expected, the critical micellar concentration (cmc) was found to decrease with chain length of the fluorinated tail from 2.1-2.5 mM for F5OM to 0.3-0.5 mM for F5DM, and micellization was mainly entropy-driven at 25 °C. Close to their respective cmc, the micelle sizes were similar for both surfactants, that is, 7 and 13 nm for F5OM and F5DM, respectively, and both increased with concentration forming 4 nm diameter rods with maximum dimensions of 50 and 70 nm, respectively, at a surfactant concentration of ∼30 mM. The surfactants were found to readily solubilize lipid vesicles and extract membrane proteins directly from Escherichia coli membranes. They were found more efficient than the commercial fluorinated detergent F6H2OM over a broad range of concentrations (1-10 mM) and even better than DDM at low concentrations (1-5 mM). When transferred into the two new surfactants, the thermal stability of the proteins bacteriorhodopsin (bR) and FhuA was higher than in the presence of their solubilization detergents and similar to that in DDM; furthermore, bR was stable over several months. The membrane enzymes SpNOX and BmrA were not as active as in DDM micelles but similarly active as in F6OM. Together, these findings indicate both extracting and stabilizing properties of the new maltose-based fluorinated surfactants, making them promising tools in MP applications.


Asunto(s)
Maltosa , Tensoactivos , Proteínas de la Membrana , Micelas , Tensión Superficial
4.
J Org Chem ; 86(21): 14672-14683, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34609857

RESUMEN

Four double-tailed hybrid fluorocarbon-hydrocarbon (F-H) surfactants with a poly(ethylene glycol) (PEG) polar headgroup were synthesized. The hydrophobic scaffold consists of an amino acid core, onto which were grafted both fluorocarbon and hydrocarbon chains of different lengths. The PEG polar head was connected to the hydrophobic scaffold through a copper(I)-mediated click reaction. The four derivatives exhibit aqueous solubility >100 g/L and self-assemble into micellar aggregates with micromolar critical micellar concentration (CMC) values, as demonstrated by isothermal titration calorimetry (ITC), surface tension (ST) measurements, and steady-state fluorescence spectroscopy. The CMC value decreased by a factor of ∼6 for each additional pair of CH2 groups, whereas a decrease by a factor of ∼2.5 was observed when the size of the PEG polar head was reduced from 2000 to 750 g/mol. Dynamic light scattering (DLS) showed unimodal micelle populations with hydrodynamic diameters of 10-15 nm, in agreement with results obtained from size-exclusion chromatography (SEC). The aggregation number increased with the hydrocarbon chain length but decreased with increasing PEG chain lengths. The combination in one molecular design of both low CMC and high water solubility makes these new surfactants promising systems for novel drug-delivery systems.


Asunto(s)
Fluorocarburos , Tensoactivos , Hidrocarburos , Interacciones Hidrofóbicas e Hidrofílicas , Micelas
5.
J Am Chem Soc ; 142(51): 21382-21392, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33315387

RESUMEN

Amphiphilic agents, called detergents, are invaluable tools for studying membrane proteins. However, membrane proteins encapsulated by conventional head-to-tail detergents tend to denature or aggregate, necessitating the development of structurally distinct molecules with improved efficacy. Here, a novel class of diastereomeric detergents with a cyclopentane core unit, designated cyclopentane-based maltosides (CPMs), were prepared and evaluated for their ability to solubilize and stabilize several model membrane proteins. A couple of CPMs displayed enhanced behavior compared with the benchmark conventional detergent, n-dodecyl-ß-d-maltoside (DDM), for all the tested membrane proteins including two G-protein-coupled receptors (GPCRs). Furthermore, CPM-C12 was notable for its ability to confer enhanced membrane protein stability compared with the previously developed conformationally rigid NBMs [J. Am. Chem. Soc. 2017, 139, 3072] and LMNG. The effect of the individual CPMs on protein stability varied depending on both the detergent configuration (cis/trans) and alkyl chain length, allowing us draw conclusions on the detergent structure-property-efficacy relationship. Thus, this study not only provides novel detergent tools useful for membrane protein research but also reports on structural features of the detergents critical for detergent efficacy in stabilizing membrane proteins.


Asunto(s)
Ciclopentanos/química , Maltosa/química , Maltosa/farmacología , Proteínas de la Membrana/química , Diseño de Fármacos , Glucósidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Estabilidad Proteica/efectos de los fármacos , Solubilidad/efectos de los fármacos , Estereoisomerismo
6.
Anal Chem ; 92(1): 1154-1161, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31829010

RESUMEN

Detergents are widely used in modern in vitro biochemistry and biophysics, in particular to aid the characterization of integral membrane proteins. An important characteristic of these chemicals in aqueous solutions is the concentration above which their molecular monomers self-associate to form micelles, termed the critical micellar concentration (CMC). Micelles are supramolecular assemblies arranged with the hydrophobic portions oriented inward and the hydrophilic head groups positioned outward to interact with the aqueous solvent. Knowledge of the CMC is not only of practical relevance but also of theoretical interest because it provides thermodynamic insights. Isothermal titration calorimetry (ITC) is a powerful method to determine CMCs, as it furnishes additional information on the enthalpy and entropy of micellization. Here we describe our extension of previous methods to determine CMCs and other thermodynamic parameters from ITC demicellization curves. The new algorithm, incorporated into the stand-alone software package D/STAIN, analyzes ITC demicellization curves by taking advantage of state-of-the-art thermogram-integration techniques and automatically providing rigorous confidence intervals on the refined parameters. As a demonstration of the software's capabilities, we undertook ITC experiments to determine the respective CMCs of n-octyl ß-d-glucopyranoside (OG), n-dodecyl ß-d-maltopyranoside (DDM), and lauryldimethylamine N-oxide (LDAO). Motivated by the fact that in vitro membrane protein studies often require additives such as precipitants (e.g., polyethylene glycol (PEG)), we also carried out ITC demicellization studies in the presence of PEG3350, finding in all cases that PEG had significant effects on the thermodynamics of detergent micellization.


Asunto(s)
Detergentes/análisis , Dimetilaminas/análisis , Glucósidos/análisis , Maltosa/análogos & derivados , Micelas , Algoritmos , Calorimetría/métodos , Calorimetría/estadística & datos numéricos , Detergentes/química , Dimetilaminas/química , Glucósidos/química , Maltosa/análisis , Maltosa/química , Polietilenglicoles/química , Programas Informáticos , Termodinámica
7.
Langmuir ; 35(12): 4287-4295, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30767533

RESUMEN

We report herein the design and synthesis of a novel series of alkyl glycoside detergents consisting of a nonionic polar headgroup that comprises two glucose moieties in a branched arrangement (DG), onto which octane-, decane-, and dodecanethiols were grafted leading to ODG, DDG, and DDDG detergents, respectively. Micellization in aqueous solution was studied by isothermal titration calorimetry, 1H NMR spectroscopy, and surface tensiometry. Critical micellar concentration values were found to decrease by a factor of ∼10 for each pair of methylene groups added to the alkyl chain, ranging from ∼0.05 to 9 mM for DDDG and ODG, respectively. Dynamic light scattering and analytical ultracentrifugation sedimentation velocity experiments were used to investigate the size and composition of the micellar aggregates, showing that the aggregation number significantly increased from ∼40 for ODG to ∼80 for DDDG. All new compounds were able to solubilize membrane proteins (MPs) from bacterial membranes, insect cells, as well as the Madin-Darby canine kidney cells. In particular, native human adenosine receptor (A2AR) and bacterial transporter (BmrA) were solubilized efficiently. Striking thermostability improvements of +13 and +8 °C were observed when ODG and DDG were, respectively, applied to wild-type and full-length A2AR. Taken together, this novel detergent series shows promising detergent potency for solubilization and stabilization of membrane proteins (MPs) and thus makes a valuable addition to the chemical toolbox available for extracting and handling these important but challenging MP targets.


Asunto(s)
Detergentes/química , Glucosa/química , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Hidrogenación , Tamaño de la Partícula , Estabilidad Proteica , Propiedades de Superficie
8.
Methods ; 147: 84-94, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29857192

RESUMEN

Fluorinated surfactants have scarcely been explored for the direct extraction of proteins from membranes because fluorination is believed to abrogate detergency. However, we have recently shown that a commercially available fluorinated surfactant readily solubilizes lipid membranes, thereby suggesting that fluorination per se does not interfere with detergent activity. In this work, we developed new fluorinated surfactants that exhibit detergency in terms of both lipid-vesicle solubilization and membrane-protein extraction. The compounds made and tested contain two glucose moieties as polar headgroup, a hydrogenated thioether linker, and a perfluorinated alkyl tail with either 4, 6, or 8 carbon atoms. The physicochemical properties of the micelles formed by the three fluorinated surfactants were evaluated by NMR spectroscopy, surface tensiometry, isothermal titration calorimetry, dynamic light scattering, small-angle X-ray scattering, and analytical ultracentrifugation. At 25 °C, micellization was mainly entropy-driven, and the CMC values were found to decrease with chain length of the fluorinated tail, whereas the aggregation number increased with chain length. Remarkably, all three surfactants were found to solubilize lipid vesicles and extract a broad range of proteins from Escherichia coli membranes. These findings demonstrate, for the first time, that nonionic fluorinated surfactants could be further exploited for the direct extraction and solubilization of membrane proteins.


Asunto(s)
Detergentes/farmacología , Proteínas de la Membrana/aislamiento & purificación , Calorimetría , Halogenación , Proteínas de la Membrana/química , Micelas , Solubilidad
9.
ACS Appl Mater Interfaces ; 16(26): 32971-32982, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38885044

RESUMEN

We report herein the synthesis of three detergents bearing a perfluorinated cyclohexyl group connected through a short, hydrogenated spacer (i.e., propyl, butyl, or pentyl) to a ß-maltoside polar head that are, respectively, called FCymal-3, FCymal-4, and FCymal-5. Increasing the length of the spacer decreased the critical micellar concentration (CMC), as demonstrated by surface tension (SFT) and isothermal titration calorimetry (ITC), from 5 mM for FCymal-3 to 0.7 mM for FCymal-5. The morphology of the micelles was studied by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), and small-angle X-ray scattering (SAXS), indicating heterogeneous rod-like shapes. While micelles of FCymal-3 and -4 have similar hydrodynamic diameters of ∼10 nm, those of FCymal-5 were twice as large. We also investigated the ability of the detergents to solubilize lipid membranes made of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine (POPC). Molecular modeling indicated that the FCymal detergents generate disorder in lipid bilayers, with FCymal-3 being inserted more deeply into bilayers than FCymal-4 and -5. This was experimentally confirmed using POPC vesicles that were completely solubilized within 2 h with FCymal-3, whereas FCymal-5 required >8 h. A similar trend was noticed for the direct extraction of membrane proteins from E. coli membranes, with FCymal-3 being more potent than FCymal-5. An opposite trend was observed in terms of stabilization of the two model membrane proteins bacteriorhodopsin (bR) and SpNOX. In all three FCymal detergents, bR was stable for at least 2 months with no signs of aggregation. However, while the structural integrity of bR was fully preserved in FCymal-4 and -5, minor bleaching was observed in FCymal-3. Similarly, SpNOX exhibited the least activity in FCymal-3 and the highest activity in FCymal-5. By combining solubilizing and stabilizing potency, FCymal detergents push forward our expectations of the usefulness of fluorinated detergents for handling and investigating membrane proteins.


Asunto(s)
Detergentes , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Detergentes/química , Halogenación , Escherichia coli/efectos de los fármacos , Fosfatidilcolinas/química , Membrana Dobles de Lípidos/química , Bacteriorodopsinas/química
10.
Biochimie ; 205: 40-52, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36375632

RESUMEN

We report herein the synthesis of zwitterionic sulfobetaine (SB) and dimethylamine oxide (AO) detergents whose alkyl chain is made of either a perfluorohexyl (F6H3) or a perfluoropentyl (F5H5) group linked to a hydrogenated spacer arm. In aqueous solution, the critical micellar concentrations (CMCs) measured by surface tensiometry (SFT) and isothermal titration calorimetry (ITC) were found in the millimolar range (1.3-2.4 mM). The morphologies of the aggregates were evaluated by dynamic light scattering (DLS), analytical ultracentrifugation (AUC), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM), demonstrating that the two perfluoropentyl derivatives formed small micelles less than 10 nm in diameter, whereas the perfluorohexyl derivatives formed larger and more heterogeneous micelles. The two SB detergents were able to solubilize synthetic lipid vesicles in a few hours; by contrast, the perfluoropentyl AO induced much faster solubilization, whereas the perfluorohexyl AO did not show any solubilization. All detergents were tested for their abilities to stabilize three membrane proteins, namely, bacteriorhodopsin (bR), the Bacillus subtilis ABC transporter BmrA, and the Streptococcus pneumoniae enzyme SpNOX. The SB detergents outperformed the AO derivatives as well as their hydrogenated analogs in stabilizing these proteins. Among the four new compounds, F5H5SB combines many desirable properties for membrane-protein study, as it is a powerful yet gentle detergent.


Asunto(s)
Detergentes , Micelas , Detergentes/química , Proteínas de la Membrana/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
11.
Nanoscale ; 14(5): 1855-1867, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35040850

RESUMEN

Amphiphilic copolymers that directly extract membrane proteins and lipids from cellular membranes to form nanodiscs combine the advantages of harsher membrane mimics with those of a native-like membrane environment. Among the few commercial polymers that are capable of forming nanodiscs, alternating diisobutylene/maleic acid (DIBMA) copolymers have gained considerable popularity as gentle and UV-transparent alternatives to aromatic polymers. However, their moderate hydrophobicities and high electric charge densities render all existing aliphatic copolymers rather inefficient under near-physiological conditions. Here, we introduce Glyco-DIBMA, a bioinspired glycopolymer that possesses increased hydrophobicity and reduced charge density but nevertheless retains excellent solubility in aqueous solutions. Glyco-DIBMA outperforms established aliphatic copolymers in that it solubilizes lipid vesicles of various compositions much more efficiently, thereby furnishing smaller, more narrowly distributed nanodiscs that preserve a bilayer architecture and exhibit rapid lipid exchange. We demonstrate the superior performance of Glyco-DIBMA in preparative and analytical applications by extracting a broad range of integral membrane proteins from cellular membranes and further by purifying a membrane-embedded voltage-gated K+ channel, which was fluorescently labeled and analyzed with the aid of microfluidic diffusional sizing (MDS) directly within native-like lipid-bilayer nanodiscs.


Asunto(s)
Membrana Dobles de Lípidos , Nanoestructuras , Interacciones Hidrofóbicas e Hidrofílicas , Maleatos , Proteínas de la Membrana , Polímeros , Solubilidad
12.
Chem Asian J ; 17(24): e202200941, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36253323

RESUMEN

Detergents have been major contributors to membrane-protein structural study for decades. However, membrane proteins solubilized in conventional detergents tend to aggregate or denature over time. Stability of large eukaryotic membrane proteins with complex structures tends to be particularly poor, necessitating development of novel detergents with improved properties. Here, we prepared a novel class of detergents, designated 3,4-bis(hydroxymethyl)hexane-1,6-diol-based maltosides (HDMs). When tested on three membrane proteins, including two G-protein-coupled receptors (GPCRs), the new detergents displayed significantly better behaviors compared with DDM. Moreover, the HDMs were superior or comparable to LMNG, an amphiphile widely used for GPCR structural study. An optimal balance of detergent rigidity vs. flexibility of the HDMs is likely responsible for their favorable behaviors toward membrane-protein stability. Thus, the current study not only introduces the HDMs, with significant potential for membrane-protein structural study, but also suggests a useful guideline for designing novel detergents for membrane-protein research.


Asunto(s)
Detergentes , Proteínas de la Membrana , Detergentes/química , Proteínas de la Membrana/química , Hexanos , Interacciones Hidrofóbicas e Hidrofílicas , Estabilidad Proteica
13.
Biochim Biophys Acta Bioenerg ; 1862(12): 148493, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34537203

RESUMEN

Cryptophytes are among the few eukaryotes employing phycobiliproteins (PBP) for light harvesting during oxygenic photosynthesis. In contrast to cyanobacterial PBP that are organized in membrane-associated phycobilisomes, those from cryptophytes are soluble within the chloroplast thylakoid lumen. Their light-harvesting capacity is due to covalent linkage of several open-chain tetrapyrrole chromophores (phycobilins). Guillardia theta utilizes the PBP phycoerythrin 545 with 15,16-dihydrobiliverdin (DHBV) in addition to phycoerythrobilin (PEB) as chromophores. The assembly of PBPs in cryptophytes involves the action of PBP-lyases as shown for cyanobacterial PBP. PBP-lyases facilitate the attachment of the chromophore in the right configuration and stereochemistry. Here we present the functional characterization of the eukaryotic S-type PBP lyase GtCPES. We show GtCPES-mediated transfer and covalent attachment of PEB to the conserved Cys82 of the acceptor PBP ß-subunit (PmCpeB) of Prochlorococcus marinus MED4. On the basis of the previously solved crystal structure, the GtCPES binding pocket was investigated using site-directed mutagenesis. Thereby, amino acid residues involved in phycobilin binding and transfer were identified. Interestingly, exchange of a single amino acid residue Met67 to Ala extended the substrate specificity to phycocyanobilin (PCB), most likely by enlarging the substrate-binding pocket. Variant GtCPES_M67A binds both PEB and PCB forming a stable, colored complex in vitro and produced in Escherichia coli. GtCPES_M67A is able to mediate PCB transfer to Cys82 of PmCpeB. Based on these findings, we postulate that this single amino acid residue has a crucial role for bilin binding specificity of S-type phycoerythrin lyases but additional factors regulate handover to the target protein.


Asunto(s)
Ficobiliproteínas , Liasas , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA