Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Toxins (Basel) ; 16(1)2024 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-38251246

RESUMEN

Botulinum neurotoxin A (BoNT/A) is a potent neurotoxin that silences cholinergic neurotransmission through the cleavage of the synaptic protein SNAP-25. Previous studies have shown that, in addition to its paralytic effects, BoNT/A can inhibit sensory nerve activity. The aim of this study was to identify how BoNT/A inhibits afferent signalling from the bladder. To investigate the role of SNAP-25 cleavage in the previously reported BoNT/A-dependent inhibition of sensory signalling, we developed a recombinant form of BoNT/A with an inactive light chain, rBoNT/A (0), unable to paralyse muscle. We also developed recombinant light chain (LC)-domain-only proteins to better understand the entry mechanisms, as the heavy chain (HC) of the protein is responsible for the internalisation of the light chain. We found that, despite a lack of catalytic activity, rBoNT/A (0) potently inhibited the afferent responses to bladder distension to a greater degree than catalytically active rBoNT/A. This was also clear from the testing of the LC-only proteins, as the inactive rLC/A (0) protein inhibited afferent responses significantly more than the active rLC/A protein. Immunohistochemistry for cleaved SNAP-25 was negative, and purinergic and nitrergic antagonists partially and totally reversed the sensory inhibition, respectively. These data suggest that the BoNT/A inhibition of sensory nerve activity in this assay is not due to the classical well-characterised 'double-receptor' mechanism of BoNT/A, is independent of SNAP25 cleavage and involves nitrergic and purinergic signalling mechanisms.


Asunto(s)
Toxinas Botulínicas Tipo A , Transducción de Señal , Neurotoxinas , Bioensayo , Músculos
2.
Toxicon ; 233: 107230, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37517594

RESUMEN

Besides neuronal cells, botulinum neurotoxins (BoNTs) can also affect other cell types such as fibroblasts or keratinocytes. These cells play a key role in skin conditions. Maintaining a high-quality sebum secretion is essential to avoid premature aging. This study explored the effect of abobotulinumtoxinA (aboBoNT-A) in the rhino mouse. Briefly, anaesthetized animals were injected via the intra-dermal route (ID; four sites of injection) by either vehicle or 0.1, 0.3 and 1 Unit aboBoNT-A per mouse. A reference group was administered with adapalene gel 0.1% (daily local application) for 15 days. Adapalene is a third-generation retinoid and is used as first-line treatment of moderate acne. The body weight and the thickness of the dorsal skin were measured on days 1, 5, 10 and 15; erythema and scaling were recorded at the same time. On day 15, animals were ethically euthanized and skin samples were collected for histology, ELISA and lipidomic assays. AboBoNT-A administered ID at the doses 0.1 U and 0.3 U per mouse was well tolerated. 1 U aboBoNT-A (per mouse) induced a transient loss of muscle tone associated with a slight body weight loss after which mice recovered a good health status. AboBoNT-A did not show any significant effect on utricles surface area but induced a significant anti-inflammatory effect on dermis at the two highest doses. Moreover, aboBoNT-A showed neither side effects commonly observed with local retinoids, nor hyperplasia or dermis inflammation. No change in skin Interleukin-1alpha (IL-1α) cytokine levels was evidenced with aboBoNT-A, whereas a dose-dependent increase of substance P (SP) concentration in the skin was recorded, suggesting that aboBoNT-A induces neuropeptide accumulation in tissue by inhibiting exocytosis mechanisms. Lipidomic analysis showed that aboBoNT-A significantly increased the sebum concentration of several lipid species, presenting skin protecting properties. Overall, these data suggest that ID aboBoNT-A has skin rejuvenation, anti-inflammatory and moisture-boosting properties.


Asunto(s)
Toxinas Botulínicas Tipo A , Sebo , Ratones , Animales , Piel , Toxinas Botulínicas Tipo A/toxicidad , Toxinas Botulínicas Tipo A/uso terapéutico , Retinoides/farmacología , Adapaleno/farmacología
3.
Toxins (Basel) ; 14(1)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35051030

RESUMEN

Botulinum neurotoxin (BoNT/A) is an FDA and NICE approved second-line treatment for overactive bladder (OAB) in patients either not responsive or intolerant to anti-cholinergic drugs. BoNT/A acts to weaken muscle contraction by blocking release of the neurotransmitter acetyl choline (ACh) at neuromuscular junctions. However, this biological activity does not easily explain all the observed effects in clinical and non-clinical studies. There are also conflicting reports of expression of the BoNT/A protein receptor, SV2, and intracellular target protein, SNAP-25, in the urothelium and bladder. This review presents the current evidence of BoNT/A's effect on bladder sensation, potential mechanisms by which it might exert these effects and discusses recent advances in understanding the action of BoNT in bladder tissue.


Asunto(s)
Toxinas Botulínicas Tipo A/farmacología , Neuronas Colinérgicas/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Vejiga Urinaria/efectos de los fármacos , Animales , Neuronas Colinérgicas/fisiología , Humanos , Ratones , Contracción Muscular/fisiología , Conejos , Ratas , Vejiga Urinaria/fisiología , Vejiga Urinaria Hiperactiva/fisiopatología
4.
Toxins (Basel) ; 14(3)2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35324702

RESUMEN

For the past two decades, botulinum neurotoxin A (BoNT/A) has been described as a strong candidate in the treatment of pain. With the production of modified toxins and the potential new applications at the visceral level, there is a real need for tools allowing the assessment of these compounds. In this study, we evaluated the jejunal mesenteric afferent nerve assay to investigate BoNT/A effects on visceral nociception. This ex vivo model allowed the continuous recording of neuronal activity in response to various stimuli. BoNT/A was applied intraluminally during three successive distensions, and the jejunum was distended every 15 min for 3 h. Finally, samples were exposed to external capsaicin. BoNT/A intoxication was validated at the molecular level with the presence of cleaved synaptosomal-associated protein of 25 (SNAP25) in nerve terminals in the mucosa and musculosa layers 3 h after treatment. BoNT/A had a progressive inhibitory effect on multiunit discharge frequency induced by jejunal distension, with a significant decrease from 1 h after application without change in jejunal compliance. The capsaicin-induced discharge was also affected by the toxin. This assay allowed the description of an inhibitory effect of BoNT/A on afferent nerve activity in response to distension and capsaicin, suggesting BoNT/A could alleviate visceral nociception.


Asunto(s)
Toxinas Botulínicas Tipo A , Nocicepción , Animales , Toxinas Botulínicas Tipo A/toxicidad , Capsaicina/farmacología , Yeyuno/metabolismo , Ratones , Neurotoxinas/farmacología , Dolor
5.
Toxins (Basel) ; 14(2)2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35202105

RESUMEN

Management of neurogenic detrusor overactivity (NDO) remains a clinical priority to improve patients' quality of life and prevent dramatic urological complications. Intradetrusor injection of onabotulinumtoxinA (BoNT/A1, botulinum neurotoxin A1) is approved as second therapeutic line in these patients, demonstrating a good efficacy. However, a loss of its efficacy over time has been described, with no clear understanding of the underlying mechanisms. This paper aims at shedding new light on BoNT/A1 secondary failure in NDO through functional and structural analysis. Three groups of patients (either non-NDO, NDO with no toxin history or toxin secondary failure) were investigated using an ex vivo bladder strip assay. Detrusor strips were tensed in organ baths and submitted to electrical field stimulation to generate contractions. Recombinant BoNT/A1 was then added at various concentrations and contractions recorded for 4 h. Histology exploring BoNT/A1 targets, fibrosis and neuronal markers was also used. Detrusor strips from patients with BoNT/A1 secondary failure displayed a smaller sensitivity to toxin ex vivo at 3 nM compared to the other groups. Histological evaluation demonstrated the presence of cleaved Synaptosomal-Associated Protein, 25 kDa (c-SNAP25) in the detrusor from the toxin-secondary failure population, indicating some remaining in vivo sensitivity to BoNT/A1 despite the therapeutic escape. Moreover, residual c-SNAP25 did not affect parasympathetic-driven contractions observed ex vivo. This study confirms the slightly lower efficacy of BoNT/A1 in the BoNT/A1 secondary failure NDO group, suggesting that the escape from BoNT/A1 efficacy in NDO occurs at least at the parasympathetic level and could imply compensatory mechanisms for detrusor contraction.


Asunto(s)
Toxinas Botulínicas Tipo A/farmacología , Fármacos Neuromusculares/farmacología , Vejiga Urinaria Neurogénica/tratamiento farmacológico , Vejiga Urinaria/efectos de los fármacos , Anciano , Femenino , Humanos , Masculino , Técnicas de Cultivo de Tejidos , Insuficiencia del Tratamiento , Urodinámica
6.
Nat Neurosci ; 25(2): 168-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34931070

RESUMEN

Bacterial products can act on neurons to alter signaling and function. In the present study, we found that dorsal root ganglion (DRG) sensory neurons are enriched for ANTXR2, the high-affinity receptor for anthrax toxins. Anthrax toxins are composed of protective antigen (PA), which binds to ANTXR2, and the protein cargoes edema factor (EF) and lethal factor (LF). Intrathecal administration of edema toxin (ET (PA + EF)) targeted DRG neurons and induced analgesia in mice. ET inhibited mechanical and thermal sensation, and pain caused by formalin, carrageenan or nerve injury. Analgesia depended on ANTXR2 expressed by Nav1.8+ or Advillin+ neurons. ET modulated protein kinase A signaling in mouse sensory and human induced pluripotent stem cell-derived sensory neurons, and attenuated spinal cord neurotransmission. We further engineered anthrax toxins to introduce exogenous protein cargoes, including botulinum toxin, into DRG neurons to silence pain. Our study highlights interactions between a bacterial toxin and nociceptors, which may lead to the development of new pain therapeutics.


Asunto(s)
Carbunco , Bacillus anthracis , Toxinas Bacterianas , Células Madre Pluripotentes Inducidas , Animales , Carbunco/microbiología , Carbunco/terapia , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Ganglios Espinales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Nociceptores/metabolismo , Dolor , Receptores de Péptidos/metabolismo
7.
Toxins (Basel) ; 13(12)2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34941672

RESUMEN

Botulinum neurotoxins (BoNTs) are notorious toxins and powerful agents and can be lethal, causing botulism, but they are also widely used as therapeutics, particularly to treat neuromuscular disorders. As of today, the commercial BoNT treatments available are from native A or B serotypes. Serotype F has shown efficacy in a clinical trial but has scarcely been used, most likely due to its medium duration of effect. Previously, the uniqueness of the light chain of the F7 subtype was identified and reported, showing an extended interaction with its substrates, VAMPs 1, 2 and 3, and a superior catalytic activity compared to other BoNT/F subtypes. In order to more extensively study the properties of this neurotoxin, we engineered a modified F7 chimera, mrBoNT/F7-1, in which all the regions of the neurotoxin were identical to BoNT/F7 except the activation loop, which was the activation loop from BoNT/F1. Use of the activation loop from BoNT/F1 allowed easier post-translational proteolytic activation of the recombinant protein without otherwise affecting its properties. mrBoNT/F7-1 was expressed, purified and then tested in a suite of in vitro and in vivo assays. mrBoNT/F7-1 was active and showed enhanced potency in comparison to both native and recombinant BoNT/F1. Additionally, the safety profile remained comparable to BoNT/F1 despite the increased potency. This new modified recombinant toxin F7 could be further exploited to develop unique therapeutics to address unmet medical needs.


Asunto(s)
Toxinas Botulínicas/química , Toxinas Botulínicas/farmacología , Músculo Liso/efectos de los fármacos , Animales , Sistema Libre de Células , Clonación Molecular , Embrión de Mamíferos , Escherichia coli , Femenino , Regulación Bacteriana de la Expresión Génica , Glicina , Ratones , Músculo Esquelético/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nervio Frénico/efectos de los fármacos , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Médula Espinal/citología
8.
Sci Adv ; 5(1): eaau7196, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30746458

RESUMEN

Although botulinum neurotoxin serotype A (BoNT/A) products are common treatments for various disorders, there is only one commercial BoNT/B product, whose low potency, likely stemming from low affinity toward its human receptor synaptotagmin 2 (hSyt2), has limited its therapeutic usefulness. We express and characterize two full-length recombinant BoNT/B1 proteins containing designed mutations E1191M/S1199Y (rBoNT/B1MY) and E1191Q/S1199W (rBoNT/B1QW) that enhance binding to hSyt2. In preclinical models including human-induced pluripotent stem cell neurons and a humanized transgenic mouse, this increased hSyt2 affinity results in high potency, comparable to that of BoNT/A. Last, we solve the cocrystal structure of rBoNT/B1MY in complex with peptides of hSyt2 and its homolog hSyt1. We demonstrate that neuronal surface receptor binding limits the clinical efficacy of unmodified BoNT/B and that modified BoNT/B proteins have promising clinical potential.


Asunto(s)
Toxinas Botulínicas Tipo A/metabolismo , Toxinas Botulínicas Tipo A/farmacología , Proteínas Recombinantes/metabolismo , Sinaptotagmina II/metabolismo , Animales , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/genética , Cristalografía por Rayos X , Femenino , Glicina/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Mutación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ingeniería de Proteínas , Conejos , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Electricidad Estática , Sinaptotagmina II/química , Sinaptotagmina II/genética
9.
Toxins (Basel) ; 10(5)2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29783676

RESUMEN

Botulinum neurotoxin (BoNT) is a major therapeutic agent that is licensed in neurological indications, such as dystonia and spasticity. The BoNT family, which is produced in nature by clostridial bacteria, comprises several pharmacologically distinct proteins with distinct properties. In this review, we present an overview of the current therapeutic landscape and explore the diversity of BoNT proteins as future therapeutics. In recent years, novel indications have emerged in the fields of pain, migraine, overactive bladder, osteoarthritis, and wound healing. The study of biological effects distal to the injection site could provide future opportunities for disease-tailored BoNT therapies. However, there are some challenges in the pharmaceutical development of BoNTs, such as liquid and slow-release BoNT formulations; and, transdermal, transurothelial, and transepithelial delivery. Innovative approaches in the areas of formulation and delivery, together with highly sensitive analytical tools, will be key for the success of next generation BoNT clinical products.


Asunto(s)
Toxinas Botulínicas/uso terapéutico , Neurotoxinas/uso terapéutico , Fármacos del Sistema Nervioso Periférico/uso terapéutico , Animales , Vías de Administración de Medicamentos , Composición de Medicamentos , Humanos , Serogrupo
10.
PLoS One ; 12(10): e0185628, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28982136

RESUMEN

Botulinum neurotoxins (BoNTs) are used extensively as therapeutic agents. Serotypes A and B are available as marketed products. Higher doses of BoNT/B are required to reach an efficacy similar to that of products containing BoNT/A. Advances in our understanding of BoNT/B mechanism of action have afforded the opportunity to make rational modifications to the toxin aimed at increasing its activity. Recently, a mutation in the light chain of BoNT/B (S201P) was described that increases the catalytic activity of the isolated BoNT/B light chain in biochemical assays. In this study, we have produced two full-length recombinant BoNT/B toxins in E.coli-one wild type (rBoNT/B1) and one incorporating the S201P mutation (rBoNT/B1(S201P)). We have compared the activity of these two molecules along with a native BoNT/B1 in biochemical cell-free assays and in several biological systems. In the cell-free assay, which measured light-chain activity alone, rBoNT/B1(S201P) cleaved VAMP-2 and VAMP-1 substrate with an activity 3-4-fold higher than rBoNT/B1. However, despite the enhanced catalytic activity of rBoNT/B1(S201P), there was no significant difference in potency between the two molecules in any of the in vitro cell-based assays, using either rodent spinal cord neurons or cortical neurons. Similarly in ex vivo tissue preparations rBoNT/B1(S201P) was not significantly more potent than rBoNT/B1 at inhibiting either diaphragm or detrusor (bladder) muscle activity in C57BL/6N and CD1 mice. Finally, no differences between rBoNT/B1 and rBoNT/B1(S201P) were observed in an in vivo digit abduction score (DAS) assay in C57BL/6N mice, either in efficacy or safety parameters. The lack of translation from the enhanced BoNT/B1(S201P) catalytic activity to potency in complex biological systems suggests that the catalytic step is not the rate-limiting factor for BoNT/B to reach maximum efficacy. In order to augment the efficacy of BoNT/B in humans, strategies other than enhancing light chain activity may need to be considered.


Asunto(s)
Toxinas Botulínicas Tipo A/farmacología , Proteína 1 de Membrana Asociada a Vesículas/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Animales , Toxinas Botulínicas Tipo A/genética , Catálisis , Células Cultivadas , Clonación Molecular , Escherichia coli/genética , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA