Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 91(13): 8192-8198, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31177771

RESUMEN

Soils retain lead contamination from possible sources such as mining, smelting, battery recycling, waste incineration, leaded gasoline, and crumbling paint. Such contamination is often concentrated in toxic hot spots that need to be identified locally. To address this need, a simple field procedure was designed to screen soil for hazardous Pb for use by the general public. The procedure is a modification of the in vitro soil Pb extraction described by Drexler and Brattin ( Hum. Ecol. Risk Assess. 2007, 13, 383 ) and EPA Method 1340, and uses a 0.4 M glycine solution at pH 1.5. A higher soil-to-solution ratio of 1:10 allows for classifying soil samples based on extractable Pb concentrations of <200 mg/kg (low), 200-400 mg/kg (medium), and >400 mg/kg (high) using sodium rhodizonate as a color indicator. The 1:10 soil-to-solution ratio also makes it possible to measure Pb concentrations in the glycine extract solutions on a continuous scale using a portable X-ray fluorescence analyzer. The procedure rather consistently extracts about one-third of the Pb extracted by the standard method across a wide range of Pb concentrations. Manufacturing the kit in larger quantities could reduce the cost of the materials well below the current $5/test.


Asunto(s)
Plomo/análisis , Contaminantes del Suelo/análisis , Suelo/química , Ciclohexanonas , Glicina , Concentración de Iones de Hidrógeno , Plomo/aislamiento & purificación , Espectrometría por Rayos X/métodos
2.
Water Resour Res ; 55(8): 6712-6728, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34079149

RESUMEN

Widespread contamination of groundwater with geogenic arsenic is attributed to microbial dissolution of arsenic-bearing iron (oxyhydr)oxides minerals coupled to the oxidation of organic carbon. The recharge sources to an aquifer can influence groundwater arsenic concentrations by transport of dissolved arsenic or reactive constituents that affect arsenic mobilization. To understand how different recharge sources affect arsenic contamination-in particular through their influence on organic carbon and sulfate cycling-we delineated and quantified recharge sources in the arsenic affected region around Hanoi, Vietnam. We constrained potential end-member compositions and employed a novel end-member mixing model using an ensemble approach to apportion recharge sources. Groundwater arsenic and dissolved organic carbon concentrations are controlled by the dominant source of recharge. High arsenic concentrations are prevalent regardless of high dissolved organic carbon or ammonium levels, indicative of organic matter decomposition, where the dominant recharge source is riverine. In contrast, high dissolved organic carbon and significant organic matter decomposition are required to generate elevated groundwater arsenic where recharge is largely nonriverine. These findings suggest that in areas of riverine recharge, arsenic may be efficiently mobilized from reactive surficial environments and carried from river-aquifer interfaces into groundwater. In groundwaters derived from nonriverine recharge areas, significantly more organic carbon mineralization is required to obtain equivalent levels of arsenic mobilization within inland sediments. This method can be broadly applied to examine the connection between hydrology, geochemistry and groundwater quality.

3.
Environ Sci Technol ; 52(16): 9243-9253, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30039966

RESUMEN

Recent laboratory studies have demonstrated that coinjection of nitrate and Fe(II) (as ferrous sulfate) to As-bearing sediments can produce an Fe mineral assemblage containing magnetite capable of immobilizing advected As under a relatively wide range of aquifer conditions. This study combined laboratory findings with process-based numerical modeling approaches, to quantify the observed Fe mineral (trans)formation and concomitant As partitioning dynamics and to assess potential nitrate-Fe(II) remediation strategies for field implementation. The model development was guided by detailed solution and sediment data from our well-controlled column experiment. The modeling results demonstrated that the fate of As during the experiment was primarily driven by ferrihydrite formation and reductive transformation and that different site densities were identified for natural and neoformed ferrihydrite to explain the observations both before and after nitrate-Fe(II) injection. Our results also highlighted that when ferrihydrite was nearing depletion, As immobilization ultimately relied on the presence of magnetite. On the basis of the column model, field-scale predictive simulations were conducted to illustrate the feasibility of the nitrate-Fe(II) strategy for intercepting advected As from a plume. The predictive simulations, which suggested that long-term As immobilization was feasible, favored a scenario that maintains high dissolved Fe(II) concentration during injection periods and thereby converts ferrihydrite to magnetite.


Asunto(s)
Arsénico , Agua Subterránea , Compuestos Férricos , Óxido Ferrosoférrico , Hierro , Minerales , Oxidación-Reducción
4.
Chem Geol ; 476: 248-259, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29353912

RESUMEN

The presence of ferrihydrite in sediments/soils is critical to the cycling of iron (Fe) and many other elements but difficult to quantify. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to speciate Fe in the solid phase, but this method is thought to have difficulties in distinguishing ferrihydrite from goethite and other minerals. In this study, both conventional EXAFS linear combination fitting (LCF) and the method of standard-additions are applied to the same samples in attempt to quantify ferrihydrite and goethite more rigorously. Natural aquifer sediments from Bangladesh and the United States were spiked with known quantities of ferrihydrite, goethite and magnetite, and analyzed by EXAFS. Known mineral mixtures were also analyzed. Evaluations of EXAFS spectra of mineral references and EXAFS-LCF fits on various samples indicate that ferrihydrite and microcrystalline goethite can be distinguished and quantified by EXAFS-LCF but that the choice of mineral references is critical to yield consistent results. Conventional EXAFS-LCF and the method of standard-additions both identified appreciable amount of ferrihydrite in Bangladesh sediments that were obtained from a low-arsenic Pleistocene aquifer. Ferrihydrite was also independently detected by sequential extraction and 57Fe MÓ§ssbauer spectroscopy. These observations confirm the accuracy of conventional EXAFS-LCF and demonstrate that combining EXAFS with additions of reference materials provides a more robust means of quantifying short-range-ordered minerals in complex samples.

5.
Appl Geochem ; 77: 24-30, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29238131

RESUMEN

The sediments of Union Lake in Southern New Jersey are contaminated with arsenic released from the Vineland Chemical Company Superfund site 11 km upstream. Seasonal anoxia has been shown to release arsenic from sediments to similar lakes; this process was hypothesized as a major arsenic source to Union Lake. Data indicate, however, that releases of arsenic to bottom waters from the sediments or from pore waters within the sediments are relatively minor: bottom water arsenic concentrations reached ~30 ppb (~12 µM) at most, representing <13% of the dissolved arsenic content of the lake. Manganese concentrations increase more quickly and to higher levels than arsenic and iron concentrations; maximum [Mn]= ~13 ppm (~250 µM), maximum [Fe] = ~6 ppm (~120 µM). Incubation experiments support the hypothesis that manganese acts as a redox buffer and prevents large arsenic releases. Under the observed conditions, little of the arsenic in the water column is from contaminated sediment. This study also suggests that arsenic release from sediment to lake water may be more important in lakes that remain anoxic more continuously.

6.
Environ Sci Technol ; 50(18): 10162-71, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27533278

RESUMEN

In situ precipitation of magnetite and other minerals potentially sequesters dissolved arsenic (As) in contaminated aquifers. This study examines As retention and transport in aquifer sediments using a multistage column experiment in which magnetite and other minerals formed from added nitrate and ferrous iron (Fe). Sediments were collected from the Dover Municipal Landfill Superfund site. Prior to nitrate-Fe(II) addition, As was not effectively retained within the sediments in the column. The combination of nitrate (10 mM) and Fe(II) (4 mM), resulted in mineral precipitation and rapidly decreased effluent As concentrations to <10 µg L(-1). Mineralogical analyses of sectioned replicate columns using sequential extractions, magnetic susceptibility and X-ray absorption spectroscopy indicate that magnetite and ferrihydrite formed in the column following nitrate-Fe(II) addition. This magnetite persisted in the column even as conditions became reducing, whereas ferrihydrite was transformed to more stable Fe oxides. This magnetite incorporated As into its structure during precipitation and subsequently adsorbed As. Adsorption to the minerals kept effluent As concentrations <10 µg L(-1) for more than 100 pore volumes despite considerable Fe reduction. The results indicate that it should be feasible to produce an in situ reactive filter by nitrate-Fe(II) injection.


Asunto(s)
Arsénico , Óxido Ferrosoférrico , Agua Subterránea/química , Hierro/química , Espectroscopía de Absorción de Rayos X
7.
Proc Natl Acad Sci U S A ; 110(14): 5331-5, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23487743

RESUMEN

Chronic exposure to arsenic (As) by drinking shallow groundwater causes widespread disease in Bangladesh and neighboring countries. The release of As naturally present in sediment to groundwater has been linked to the reductive dissolution of iron oxides coupled to the microbial respiration of organic carbon (OC). The source of OC driving this microbial reduction--carbon deposited with the sediments or exogenous carbon transported by groundwater--is still debated despite its importance in regulating aquifer redox status and groundwater As levels. Here, we used the radiocarbon ((14)C) signature of microbial DNA isolated from groundwater samples to determine the relative importance of surface and sediment-derived OC. Three DNA samples collected from the shallow, high-As aquifer and one sample from the underlying, low-As aquifer were consistently younger than the total sediment carbon, by as much as several thousand years. This difference and the dominance of heterotrophic microorganisms implies that younger, surface-derived OC is advected within the aquifer, albeit more slowly than groundwater, and represents a critical pool of OC for aquifer microbial communities. The vertical profile shows that downward transport of dissolved OC is occurring on anthropogenic timescales, but bomb (14)C-labeled dissolved OC has not yet accumulated in DNA and is not fueling reduction. These results indicate that advected OC controls aquifer redox status and confirm that As release is a natural process that predates human perturbations to groundwater flow. Anthropogenic perturbations, however, could affect groundwater redox conditions and As levels in the future.


Asunto(s)
Arsénico/análisis , Radioisótopos de Carbono/análisis , ADN/química , Sedimentos Geológicos/análisis , Agua Subterránea/análisis , Agua Subterránea/microbiología , Metagenoma/genética , Bangladesh , Secuencia de Bases , ADN/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Análisis de Secuencia de ADN
8.
Environ Chem ; 11(5): 525-537, 2014 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-25598701

RESUMEN

Arsenic is a prevalent contaminant at a large number of US Superfund sites; establishing techniques that accelerate As remediation could benefit many sites. Hundreds of tons of As were released into the environment by the Vineland Chemical Co. in southern New Jersey during its manufacturing lifetime (1949-1994), resulting in extensive contamination of surface and subsurface soils and sediments, groundwater, and the downstream watershed. Despite substantial intervention at this Superfund site, sufficient aquifer cleanup could require many decades if based on traditional pump and treat technologies only. Laboratory column experiments have suggested that oxalic acid addition to contaminated aquifer solids could promote significant As release from the solid phase. To evaluate the potential of chemical additions to increase As release in situ and boost treatment efficiency, a forced gradient pilot scale study was conducted on the Vineland site. During spring/summer 2009, oxalic acid and bromide tracer were injected into a small portion (~50 m2) of the site for 3 months. Groundwater samples indicate that introduction of oxalic acid led to increased As release. Between 2.9 and 3.6 kg of As were removed from the sampled wells as a result of the oxalic acid treatment during the 3-month injection. A comparison of As concentrations on sediment cores collected before and after treatment and analyzed using X-ray fluorescence spectroscopy suggested reduction in As concentrations of ~36% (median difference) to 48% (mean difference). While further study is necessary, the addition of oxalic acid shows potential for accelerating treatment of a highly contaminated site and decreasing the As remediation time-scale.

9.
PLoS One ; 19(7): e0304447, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38990886

RESUMEN

Urban street trees offer cities critical environmental and social benefits. In New York City (NYC), a decadal census of every street tree is conducted to help understand and manage the urban forest. However, it has previously been impossible to analyze growth of an individual tree because of uncertainty in tree location. This study overcomes this limitation using a three-step alignment process for identifying individual trees with ZIP Codes, address, and species instead of map coordinates. We estimated individual growth rates for 126,362 street trees (59 species and 19% of 2015 trees) using the difference between diameter at breast height (DBH) from the 2005 and 2015 tree censuses. The tree identification method was verified by locating and measuring the DBH of select trees and measuring a set of trees annually for over 5 years. We examined determinants of tree growth rates and explored their spatial distribution. In our newly created NYC tree growth database, fourteen species have over 1000 unique trees. The three most abundant tree species vary in growth rates; London Planetree (n = 32,056, 0.163 in/yr) grew the slowest compared to Honeylocust (n = 15,967, 0.356 in/yr), and Callery Pear (n = 15,902, 0.334 in/yr). Overall, Silver Linden was the fastest growing species (n = 1,149, 0.510 in/yr). Ordinary least squares regression that incorporated biological factors including size and the local urban form indicated that species was the major factor controlling growth rates, and tree stewardship had only a small effect. Furthermore, tree measurements by volunteer community scientists were as accurate as those made by NYC staff. Examining city wide patterns of tree growth indicates that areas with a higher Social Vulnerability Index have higher than expected growth rates. Continued efforts in street tree planting should utilize known growth rates while incorporating community voices to better provide long-term ecosystem services across NYC.


Asunto(s)
Ciudades , Árboles , Árboles/crecimiento & desarrollo , Ciudad de Nueva York , Bosques
10.
mSphere ; 9(1): e0060023, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38168676

RESUMEN

Influenza virus poses a recurring threat to public health and infects many populations in annual waves of generally unpredictable magnitude and timing. We aimed to detect the arrival and estimate the case magnitude of seasonal influenza A in urban New York City college dormitory buildings. Our wastewater-based surveillance (WBS) program measured viral RNA in the sewage outflow of three dormitories at Barnard College in 2021 and 2022. Wastewater test positivity strongly correlated with New York County clinical cases (Kendall's τ = 0.58). Positive wastewater samples are also associated with campus clinical cases. The 2022 data stand in stark contrast to the 2021 results by revealing the more frequent and earlier presence of influenza A. The increase in positive tests is significant (P < 0.01). It is further noteworthy that positive samples were not evenly distributed among buildings. Surveillance additionally identified the influenza A H3 subtype but did not detect any influenza B. We also systematically analyzed our viral purification protocol to identify in which fraction influenza can be found. While virus can be found in solid fractions, a substantial quantity remains in the final liquid fraction. Our work focuses on individual buildings rather than larger sewersheds because buildings may localize interseasonal influenza variation to specific subpopulations. Our results highlight the potential value of building-level WBS in measuring influenza incidence to help guide public health intervention.IMPORTANCESeasonal influenza remains a major public health burden. We monitored influenza A in dormitory wastewater of a New York City college in 2021 and 2022. Longitudinal samples acquired over consecutive years allowed measurement of individual buildings between seasons. We uncovered building-level changes in the magnitude and timing of test positivity concordant with clinical cases. Surveillance also localized the heterogeneity of influenza variation during the large 2022 seasonal surge. The ability to detect such changes could be leveraged as part of a public health response.


Asunto(s)
Gripe Humana , Humanos , Gripe Humana/epidemiología , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , Brotes de Enfermedades , Salud Pública
11.
Water Resour Res ; 49(7): 3897-3911, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24653543

RESUMEN

Fecal bacteria are frequently found at much greater distances than would be predicted by laboratory studies, indicating that improved models that incorporate more complexity are might be needed to explain the widespread contamination of many shallow aquifers. In this study, laboratory measurements of breakthrough and retained bacteria in columns of intact and repacked sediment cores from Bangladesh were fit using a two-population model with separate reversible and irreversible attachment sites that also incorporated bacterial decay rates. Separate microcosms indicated an average first order decay rate of 0.03 log10 / day for free bacteria in both the liquid phase and bacteria attached to the solid phase. Although two-thirds of the column results could be well fit with a dual deposition site, single population model, fitting of one third of the results required a two-population model with a high irreversible attachment rate (between 5 and 60 hr-1) for one population of bacteria and a much lower rate (from 5 hr-1 to essentially zero) for the second. Inferred attachment rates for the reversible sites varied inversely with grain size (varying from 1 - 20 hr-1 for grain sizes between 0.1 and 0.3 mm) while reversible detachment rates were found to be nearly constant (approximately 0.5 hr-1). Field simulations based on the fitted two-population model parameters predict only a two-fold reduction in fecal source concentration over a distance of 10 m, determined primarily by the decay rate of the bacteria. The existence of a secondary population of bacteria with a low attachment rate might help explain the observed widespread contamination of tubewell water with E. coli at the field site where the cores were collected, as well as other similar sites.

12.
Sci Rep ; 13(1): 19324, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935778

RESUMEN

Urban parks became critical for maintaining the well-being of urban residents during the COVID-19 global pandemic. To examine the impact of COVID-19 on urban park usage, we selected New York City (NYC) and used SafeGraph mobility data, which was collected from a large sample of mobile phone users, to assess the change in park visits and travel distance to a park based on 1) park type, 2) the income level of the visitor census block group (visitor CBG) and 3) that of the park census block group (park CBG). All analyses were adjusted for the impact of temperature on park visitation, and we focused primarily on visits made by NYC residents. Overall, for the eight most popular park types in NYC, visits dropped by 49.2% from 2019 to 2020. The peak reduction in visits occurred in April 2020. Visits to all park types, excluding Nature Areas, decreased from March to December 2020 as compared to 2019. Parks located in higher-income CBGs tended to have lower reductions in visits, with this pattern being primarily driven by large parks, including Flagship Parks, Community Parks and Nature Areas. All types of parks saw significant decreases in distance traveled to visit them, with the exception of the Jointly Operated Playground, Playground, and Nature Area park types. Visitors originating from lower-income CBGs traveled shorter distances to parks and had less reduction in travel distances compared to those from higher-income CBGs. Furthermore, both before and during the pandemic, people tended to travel a greater distance to parks located in high-income CBGs compared to those in low-income CBGs. Finally, multiple types of parks proved crucial destinations for NYC residents during the pandemic. This included Nature Areas to which the visits remained stable, along with Recreation Field/Courts which had relatively small decreases in visits, especially for lower-income communities. Results from this study can support future park planning by shedding light on the different uses of certain park types before and during a global crisis, when access to these facilities can help alleviate the human well-being consequences of "lockdown" policies.


Asunto(s)
COVID-19 , Recreación , Humanos , Parques Recreativos , Pandemias , Instalaciones Públicas , COVID-19/epidemiología
13.
Sci Total Environ ; 899: 165407, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429467

RESUMEN

Contaminated soil in urban residential areas is often overlooked as a source of childhood exposure to toxic levels of lead (Pb). We document mean Pb concentrations of 1200 ± 1000 mg/kg, three times the now outdated EPA soil hazard standard of 400 mg/kg, for 370 surface soils collected from 76 homes in the boroughs of Brooklyn and Manhattan of New York City. The mean Pb content of 250 ± 290 mg/kg Pb for 571 surface soils collected from tree pits and public parks was much lower. A subset of 22 surface samples analyzed by EPA Method 1340 extracted 86 ± 21 % (±1SD) of total soil Pb, indicating that it the Pb was highly bioavailable. To investigate the origin of backyard contamination, 49 cores were collected to an average depth of 30 cm from a subset of 27 homes. Twelve soil cores were analyzed for 210Pb and 137Cs to constrain processes that impact contaminant distribution and inventories (particle focusing, soil accumulation, loss, and mixing). Concentrations of Pb declined with depth in 60 % of the cores but usually did not reach background. Mean uncorrected Pb inventories of 340 ± 210 g/m2 Pb (mean ± 1SD, n = 12) were more than five times higher than the radionuclide corrected inventory of 57 g/m2 from Central Park soil cores. Average inventories of 210Pbxs (3.5 ± 0.9 kBq/m2) and 137Cs (0.9 ± 0.6 kBq/m2) corresponded to 71 ± 19 % and 50 ± 30 % of the predicted atmospheric inventories. Elevated Pb concentrations were found both in the fine (<1 mm) and coarse (>1 mm) fractions, the latter suggesting a local non-atmospheric source. This was confirmed by individual grains containing up to 6 % Pb and visible pieces of coal, bricks, and ash. Regardless of the source of contamination in backyard soils, systematic testing is needed to identify contaminated areas and reduce child exposure.


Asunto(s)
Contaminantes del Suelo , Suelo , Niño , Humanos , Plomo , Contaminantes del Suelo/análisis , Radioisótopos de Cesio , Monitoreo del Ambiente
14.
Microbiol Spectr ; : e0292922, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36975999

RESUMEN

We established wastewater surveillance of SARS-CoV-2 in a small, residential, urban college as part of an integrated public health response during the COVID-19 pandemic. Students returned to campus in spring 2021. During the semester, students were required to perform nasal PCR tests twice weekly. At the same time, wastewater monitoring was established in 3 campus dormitory buildings. Two were dedicated dormitories with populations of 188 and 138 students; 1 was an isolation building where students were moved within 2 h of receiving positive test results. Analysis of wastewater from isolation indicated that the amount of viral shedding was highly variable and that viral concentration could not be used to estimate the number of cases at the building level. However, rapid movement of students to isolation enabled determination of predictive power, specificity, and sensitivity from instances in which generally one positive case at a time occurred in a building. Our assay yields effective results with an ~60% positive predictive power, ~90% negative predictive power, and ~90% specificity. Sensitivity, however, is low at ~40%. Detection is improved in the few instances of 2 simultaneous positive cases, with sensitivity of 1 case versus 2 cases increasing from ~20% to 100%. We also measured the appearance of a variant of concern on campus and noted a similarity in timeline with increased prevalence in surrounding New York City. Monitoring SARS-CoV-2 in the sewage outflow of individual buildings can be used with a realistic goal of containing outbreak clusters but not necessarily single cases. IMPORTANCE Diagnostic testing of sewage can detect levels of circulating viruses to help inform public health. Wastewater-based epidemiology has been particularly active during the COVID-19 pandemic to measure the prevalence of SARS-CoV-2. Understanding the technical limitations of diagnostic testing for individual buildings would help inform future surveillance programs. We report our diagnostic and clinical data monitoring of buildings on a college campus in New York City during the spring 2021 semester. Frequent nasal testing, mitigation measures, and public health protocols provided a context in which to study the effectiveness of wastewater-based epidemiology. Our efforts could not consistently detect individual positive COVID-19 cases, but sensitivity is significantly improved in detecting two simultaneous cases. We therefore contend that wastewater surveillance may be more practically suited for the mitigation of outbreak clusters.

15.
Environ Sci Technol ; 46(3): 1361-70, 2012 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-22191430

RESUMEN

Ponds receiving latrine effluents may serve as sources of fecal contamination to shallow aquifers tapped by millions of tube-wells in Bangladesh. To test this hypothesis, transects of monitoring wells radiating away from four ponds were installed in a shallow sandy aquifer underlying a densely populated village and monitored for 14 months. Two of the ponds extended to medium sand. Another pond was sited within silty sand and the last in silt. The fecal indicator bacterium E. coli was rarely detected along the transects during the dry season and was only detected near the ponds extending to medium sand up to 7 m away during the monsoon. A log-linear decline in E. coli and Bacteroidales concentrations with distance along the transects in the early monsoon indicates that ponds excavated in medium sand were the likely source of contamination. Spatial removal rates ranged from 0.5 to 1.3 log(10)/m. After the ponds were artificially filled with groundwater to simulate the impact of a rain storm, E. coli levels increased near a pond recently excavated in medium sand, but no others. These observations show that adjacent sediment grain-size and how recently a pond was excavated influence the how much fecal contamination ponds receiving latrine effluents contribute to neighboring groundwater.


Asunto(s)
Monitoreo del Ambiente/estadística & datos numéricos , Escherichia coli/aislamiento & purificación , Aguas del Alcantarillado/microbiología , Cuartos de Baño , Abastecimiento de Agua , Pozos de Agua/microbiología , Bangladesh , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Tamaño de la Partícula
16.
J Water Health ; 10(4): 565-78, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23165714

RESUMEN

Bangladesh is underlain by shallow aquifers in which millions of drinking water wells are emplaced without annular seals. Fecal contamination has been widely detected in private tubewells. To evaluate the impact of well construction on microbial water quality 35 private tubewells (11 with intact cement platforms, 19 without) and 17 monitoring wells (11 with the annulus sealed with cement, six unsealed) were monitored for culturable Escherichia coli over 18 months. Additionally, two 'snapshot' sampling events were performed on a subset of wells during late-dry and early-wet seasons, wherein the fecal indicator bacteria (FIB) E. coli, Bacteroidales and the pathogenicity genes eltA (enterotoxigenic E. coli; ETEC), ipaH (Shigella) and 40/41 hexon (adenovirus) were detected using quantitative polymerase chain reaction (qPCR). No difference in E. coli detection frequency was found between tubewells with and without platforms. Unsealed private wells, however, contained culturable E. coli more frequently and higher concentrations of FIB than sealed monitoring wells (p < 0.05), suggestive of rapid downward flow along unsealed annuli. As a group the pathogens ETEC, Shigella and adenovirus were detected more frequently (10/22) during the wet season than the dry season (2/20). This suggests proper sealing of private tubewell annuli may lead to substantial improvements in microbial drinking water quality.


Asunto(s)
Monitoreo del Ambiente/métodos , Heces/microbiología , Pozos de Agua/microbiología , Adenoviridae/genética , Adenoviridae/aislamiento & purificación , Proteínas Bacterianas/genética , Bangladesh , Proteínas de la Cápside/genética , Agua Potable/microbiología , Escherichia coli Enterotoxigénica/genética , Escherichia coli Enterotoxigénica/aislamiento & purificación , Proteínas de Escherichia coli/genética , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Shigella/genética , Shigella/aislamiento & purificación , Calidad del Agua
17.
Sci Total Environ ; 806(Pt 3): 151353, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34743882

RESUMEN

Chronic exposure from drinking well-water with naturally high concentrations of fluoride (F-) has serious health consequences in several regions across the world including South Asia, where the rural population is particularly dependent on untreated groundwater pumped from private wells. An extensive campaign to test 28,648 wells was conducted across the Punjab plains of Pakistan and India by relying primarily on field kits to document the scale of the problem and shed light on the underlying mechanisms. Groundwater samples were collected from a subset of 712 wells for laboratory analysis of F- and other constituents. A handful of sites showing contrasting levels of F- in groundwater were also drilled to determine if the composition of aquifer sediment differed between these sites. The laboratory data show that the field kits correctly classified 91% of the samples relative to the World Health Organization guideline for drinking water of 1.5 mg/L F-. The kit data indicate that 9% of wells across a region extending from the Indus to the Sutlej rivers were elevated in F- relative to this guideline. Field data indicate an association between the proportion of well-water samples with F- > 1.5 mg/L and electric conductivity (EC) > 1.5 mS/cm across six floodplains and six intervening doabs. Low Ca2+ concentrations and elevated bicarbonate (HCO3- > 500 mg/L) and sodium (Na+ > 200 mg/L) in high F- groundwater suggest regulation by fluorite. This could be through either the lack of precipitation or the dissolution of fluorite regulated by the loss of Ca2+ from groundwater due to precipitation of calcite and/or ion exchange with clay minerals. Widespread salinization of Punjab aquifers attributed to irrigation may have contributed to higher F- levels in groundwater of the region. Historical conductivity data suggest salinization has yet to be reversed in spite of changes in water resources management.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Fluoruros/análisis , Humanos , India , Pakistán , Contaminantes Químicos del Agua/análisis
18.
Environ Sci Technol ; 45(7): 2648-54, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21405115

RESUMEN

Dissimilatory metal-reducing bacteria can mobilize As, but few studies have studied such processes in deeper orange-colored Pleistocene sands containing 1-2 mg kg(-1) As that are associated with low-As groundwater in Bangladesh. To address this gap, anaerobic incubations were conducted in replicate over 90 days using natural orange sands initially containing 0.14 mg kg(-1) of 1 M phosphate-extractable As (24 h), >99% as As(V), and 0.8 g kg(-1) of 1.2 M HCl-leachable Fe (1 h at 80 °C), 95% as Fe(III). The sediment was resuspended in artificial groundwater, with or without lactate as a labile carbon source, and inoculated with metal-reducing Shewanella sp. ANA-3. Within 23 days, dissolved As concentrations increased to 17 µg L(-1) with lactate, 97% as As(III), and 2 µg L(-1) without lactate. Phosphate-extractable As concentrations increased 4-fold to 0.6 mg kg(-1) in the same incubations, even without the addition of lactate. Dissolved As levels in controls without Shewanella, both with and without lactate, instead remained <1 µg L(-1). These observations indicate that metal-reducers such as Shewanella can trigger As release to groundwater by converting sedimentary As to a more mobilizable form without the addition of high levels of labile carbon. Such interactions need to be better understood to determine the vulnerability of low-As aquifers from which drinking water is increasingly drawn in Bangladesh.


Asunto(s)
Arsénico/metabolismo , Agua Dulce/microbiología , Sedimentos Geológicos/microbiología , Microbiología del Agua , Contaminantes Químicos del Agua/metabolismo , Arsénico/análisis , Bangladesh , Agua Dulce/química , Sedimentos Geológicos/química , Hierro/metabolismo , Shewanella/metabolismo , Dióxido de Silicio/química , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua/análisis
19.
Environ Sci Technol ; 45(4): 1199-205, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21226536

RESUMEN

The health risks of As exposure due to the installation of millions of shallow tubewells in the Bengal Basin are known, but fecal contamination of shallow aquifers has not systematically been examined. This could be a source of concern in densely populated areas with poor sanitation because the hydraulic travel time from surface water bodies to shallow wells that are low in As was previously shown to be considerably shorter than for shallow wells that are high in As. In this study, 125 tubewells 6-36 m deep were sampled in duplicate for 18 months to quantify the presence of the fecal indicator Escherichia coli. On any given month, E. coli was detected at levels exceeding 1 most probable number per 100 mL in 19-64% of all shallow tubewells, with a higher proportion typically following periods of heavy rainfall. The frequency of E. coli detection averaged over a year was found to increase with population surrounding a well and decrease with the As content of a well, most likely because of downward transport of E. coli associated with local recharge. The health implications of higher fecal contamination of shallow tubewells, to which millions of households in Bangladesh have switched in order to reduce their exposure to As, need to be evaluated.


Asunto(s)
Arsénico/análisis , Escherichia coli/aislamiento & purificación , Abastecimiento de Agua/normas , Bangladesh , Monitoreo del Ambiente , Heces/microbiología , Agua Subterránea , Humanos , Contaminación del Agua/análisis
20.
J Water Health ; 9(4): 708-17, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22048430

RESUMEN

The retention and release of total coliforms and Escherichia coli was investigated in hand-pumps removed from tubewells tapping a faecally contaminated aquifer in Matlab, Bangladesh, and from a new hand-pump deliberately spiked with E. coli. All hand-pumps were connected to reservoirs of sterile water and flushed. Faecal coliforms were observed in the discharge from all three of the previously used hand-pumps, at concentrations comparable to levels measured in discharge when they were attached to the tubewells. During daily flushing of one of the previously used hand-pumps, the concentration of total coliforms in the discharge remained relatively constant (approximately 10³ MPN/100 mL). Concentrations of E. coli in the pump discharge declined over time, but E. coli was still detectable up to 29 days after the start of flushing. In the deliberately spiked hand-pump, E. coli was observed in the discharge over 125 days (t50 = 8 days) and found to attach preferentially to elastomeric materials within the hand-pump. Attempts to disinfect both the village and new hand-pumps using shock chlorination were shown to be unsuccessful. These results demonstrate that hand-pumps can act as persistent reservoirs for microbial indicator bacteria. This could potentially influence drinking water quality and bias testing of water quality.


Asunto(s)
Contaminación de Equipos , Microbiología del Agua/normas , Abastecimiento de Agua/normas , Monitoreo del Ambiente , Diseño de Equipo , Halogenación , Humanos , Factores de Tiempo , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA