Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Infection ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39244714

RESUMEN

INTRODUCTION: Despite national guidelines and use of intrapartum antibiotic prophylaxis (IAP), Streptococcus agalactiae (group B streptococci (GBS)) is still a leading cause of morbidity and mortality in newborns in Europe and the United States. The European DEVANI (Design of a Vaccine Against Neonatal Infections) program assessed the neonatal GBS infection burden in Europe, the clinical characteristics of colonized women and microbiological data of GBS strains in colonized women and their infants with early-onset disease (EOD). METHODS: Overall, 1083 pregnant women with a GBS-positive culture result from eight European countries were included in the study. Clinical obstetrical information was collected by a standardized questionnaire. GBS strains were characterized by serological and molecular methods. RESULTS: Among GBS carriers included in this study after testing positive for GBS by vaginal or recto-vaginal sampling, 13.4% had at least one additional obstetrical risk factor for EOD. The five most common capsular types (i.e., Ia, Ib, II, III and V) comprised ~ 93% of GBS carried. Of the colonized women, 77.8% received any IAP, and in 49.5% the IAP was considered appropriate. In our cohort, nine neonates presented with GBS early-onset disease (EOD) with significant regional heterogeneity. CONCLUSIONS: Screening methods and IAP rates need to be harmonized across Europe in order to reduce the rates of EOD. The epidemiological data from eight different European countries provides important information for the development of a successful GBS vaccine.

2.
Infection ; 51(4): 981-991, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36547864

RESUMEN

PURPOSE: Group B streptococcus (GBS) remains a leading cause of invasive disease, mainly sepsis and meningitis, in infants < 3 months of age and of mortality among neonates. This study, a major component of the European DEVANI project (Design of a Vaccine Against Neonatal Infections) describes clinical and important microbiological characteristics of neonatal GBS diseases. It quantifies the rate of antenatal screening and intrapartum antibiotic prophylaxis among cases and identifies risk factors associated with an adverse outcome. METHODS: Clinical and microbiological data from 153 invasive neonatal cases (82 early-onset [EOD], 71 late-onset disease [LOD] cases) were collected in eight European countries from mid-2008 to end-2010. RESULTS: Respiratory distress was the most frequent clinical sign at onset of EOD, while meningitis is found in > 30% of LOD. The study revealed that 59% of mothers of EOD cases had not received antenatal screening, whilst GBS was detected in 48.5% of screened cases. Meningitis was associated with an adverse outcome in LOD cases, while prematurity and the presence of cardiocirculatory symptoms were associated with an adverse outcome in EOD cases. Capsular-polysaccharide type III was the most frequent in both EOD and LOD cases with regional differences in the clonal complex distribution. CONCLUSIONS: Standardizing recommendations related to neonatal GBS disease and increasing compliance might improve clinical care and the prevention of GBS EOD. But even full adherence to antenatal screening would miss a relevant number of EOD cases, thus, the most promising prophylactic approach against GBS EOD and LOD would be a vaccine for maternal immunization.


Asunto(s)
Complicaciones Infecciosas del Embarazo , Infecciones Estreptocócicas , Recién Nacido , Lactante , Humanos , Femenino , Embarazo , Streptococcus agalactiae , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/prevención & control , Profilaxis Antibiótica/efectos adversos , Complicaciones Infecciosas del Embarazo/diagnóstico , Complicaciones Infecciosas del Embarazo/epidemiología , Europa (Continente)/epidemiología
3.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569427

RESUMEN

The increasing diffusion of antimicrobial resistance (AMR) across more and more bacterial species emphasizes the urgency of identifying innovative treatment strategies to counter its diffusion. Pathogen infection prevention is among the most effective strategies to prevent the spread of both disease and AMR. Since their discovery, vaccines have been the strongest prophylactic weapon against infectious diseases, with a multitude of different antigen types and formulative strategies developed over more than a century to protect populations from different pathogens. In this review, we review the main characteristics of vaccine formulations in use and under development against AMR pathogens, focusing on the importance of administering multiple antigens where possible, and the challenges associated with their development and production. The most relevant antigen classes and adjuvant systems are described, highlighting their mechanisms of action and presenting examples of their use in clinical trials against AMR. We also present an overview of the analytical and formulative strategies for multivalent vaccines, in which we discuss the complexities associated with mixing multiple components in a single formulation. This review emphasizes the importance of combining existing knowledge with advanced technologies within a Quality by Design development framework to efficiently develop vaccines against AMR pathogens.

4.
J Virol ; 95(15): e0220720, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34011552

RESUMEN

Heterodimers of glycoproteins H (gH) and L (gL) comprise a basal element of the viral membrane fusion machinery conserved across herpesviruses. In human cytomegalovirus (HCMV), the glycoprotein UL116 assembles onto gH at a position similar to that occupied by gL, forming a heterodimer that is incorporated into virions. Here, we show that UL116 promotes the expression of gH/gL complexes and is required for the efficient production of infectious cell-free virions. UL116-null mutants show a 10-fold defect in production of infectious cell-free virions from infected fibroblasts and epithelial cells. This defect is accompanied by reduced expression of two disulfide-linked gH/gL complexes that play crucial roles in viral entry: the heterotrimer of gH/gL with glycoprotein O (gO) and the pentameric complex of gH/gL with UL128, UL130, and UL131. Kifunensine, a mannosidase inhibitor that interferes with endoplasmic reticulum (ER)-associated degradation (ERAD) of terminally misfolded glycoproteins, restored levels of gH, gL, and gO in UL116-null-infected cells, indicating that constituents of HCMV gH complexes are unstable in the absence of UL116. Further, we find that gH/UL116 complexes are abundant in virions, since a major gH species not covalently linked to other glycoproteins, which has long been observed in the literature, is detected from wild-type but not UL116-null virions. Interestingly, UL116 coimmunoprecipitates with UL148, a viral ER-resident glycoprotein that attenuates ERAD of gO, and we observe elevated levels of UL116 in UL148-null virions. Collectively, our findings argue that UL116 is a chaperone for gH that supports the assembly, maturation, and incorporation of gH/gL complexes into virions. IMPORTANCE HCMV is a betaherpesvirus that causes dangerous opportunistic infections in immunocompromised patients as well as in the immune-naive fetus and preterm infants. The potential of the virus to enter new host cells is governed in large part by two alternative viral glycoprotein H (gH)/glycoprotein L (gL) complexes that play important roles in entry: gH/gL/gO and gH/gL/UL128-131. A recently identified virion gH complex, comprised of gH bound to UL116, adds a new layer of complexity to the mechanisms that contribute to HCMV infectivity. Here, we show that UL116 promotes the expression of gH/gL complexes and that UL116 interacts with the viral ER-resident glycoprotein UL148, a factor that supports the expression of gH/gL/gO. Overall, our results suggest that UL116 is a chaperone for gH. These findings have important implications for understanding HCMV cell tropism as well as for the development of vaccines against the virus.


Asunto(s)
Citomegalovirus/crecimiento & desarrollo , Glicoproteínas de Membrana/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/metabolismo , Alcaloides/farmacología , Línea Celular , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/patología , Estrés del Retículo Endoplásmico/fisiología , Inhibidores Enzimáticos/farmacología , Regulación Viral de la Expresión Génica/genética , Células HEK293 , Humanos , Proteínas Virales de Fusión/genética , Internalización del Virus
5.
PLoS Pathog ; 16(10): e1008882, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33007046

RESUMEN

Neisseria meningitidis serogroup B (MenB) is the leading cause of meningococcal meningitis and sepsis in industrialized countries, with the highest incidence in infants and adolescents. Two recombinant protein vaccines that protect against MenB are now available (i.e. 4CMenB and MenB-fHbp). Both vaccines contain the Factor H Binding Protein (fHbp) antigen, which can bind the Human Factor H (fH), the main negative regulator of the alternative complement pathway, thus enabling bacterial survival in the blood. fHbp is present in meningococcal strains as three main variants which are immunologically distinct. Here we sought to obtain detailed information about the epitopes targeted by anti-fHbp antibodies induced by immunization with the 4CMenB multicomponent vaccine. Thirteen anti-fHbp human monoclonal antibodies (mAbs) were identified in a library of over 100 antibody fragments (Fabs) obtained from three healthy adult volunteers immunized with 4CMenB. Herein, the key cross-reactive mAbs were further characterized for antigen binding affinity, complement-mediated serum bactericidal activity (SBA) and the ability to inhibit binding of fH to live bacteria. For the first time, we identified a subset of anti-fHbp mAbs able to elicit human SBA against strains with all three variants and able to compete with human fH for fHbp binding. We present the crystal structure of fHbp v1.1 complexed with human antibody 4B3. The structure, combined with mutagenesis and binding studies, revealed the critical cross-reactive epitope. The structure also provided the molecular basis of competition for fH binding. These data suggest that the fH binding site on fHbp v1.1 can be accessible to the human immune system upon immunization, enabling elicitation of human mAbs broadly protective against MenB. The novel structural, biochemical and functional data are of great significance because the human vaccine-elicited mAbs are the first reported to inhibit the binding of fH to fHbp, and are bactericidal with human complement. Our studies provide molecular insights into the human immune response to the 4CMenB meningococcal vaccine and fuel the rationale for combined structural, immunological and functional studies when seeking deeper understanding of the mechanisms of action of human vaccines.


Asunto(s)
Anticuerpos/inmunología , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Meningitis Meningocócica/inmunología , Vacunas Meningococicas/administración & dosificación , Neisseria meningitidis/inmunología , Adulto , Anticuerpos/sangre , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Factor H de Complemento/inmunología , Factor H de Complemento/metabolismo , Humanos , Meningitis Meningocócica/metabolismo , Meningitis Meningocócica/microbiología , Meningitis Meningocócica/prevención & control
6.
Microb Cell Fact ; 20(1): 33, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531008

RESUMEN

BACKGROUND: The display of recombinant proteins on cell surfaces has a plethora of applications including vaccine development, screening of peptide libraries, whole-cell biocatalysts and biosensor development for diagnostic, industrial or environmental purposes. In the last decades, a wide variety of surface display systems have been developed for the exposure of recombinant proteins on the surface of Escherichia coli, such as autotransporters and outer membrane proteins. RESULTS: In this study, we assess three approaches for the surface display of a panel of heterologous and homologous mature lipoproteins in E. coli: four from Neisseria meningitidis and four from the host strain that are known to be localised in the inner leaflet of the outer membrane. Constructs were made carrying the sequences coding for eight mature lipoproteins, each fused to the delivery portion of three different systems: the autotransporter adhesin involved in diffuse adherence-I (AIDA-I) from enteropathogenic E. coli, the Lpp'OmpA chimaera and a truncated form of the ice nucleation protein (INP), InaK-NC (N-terminal domain fused with C-terminal one) from Pseudomonas syringae. In contrast to what was observed for the INP constructs, when fused to the AIDA-I or Lpp'OmpA, most of the mature lipoproteins were displayed on the bacterial surface both at 37 and 25 °C as demonstrated by FACS analysis, confocal and transmission electron microscopy. CONCLUSIONS: To our knowledge this is the first study that compares surface display systems using a number of passenger proteins. We have shown that the experimental conditions, including the choice of the carrier protein and the growth temperature, play an important role in the translocation of mature lipoproteins onto the bacterial surface. Despite all the optimization steps performed with the InaK-NC anchor motif, surface exposure of the passenger proteins used in this study was not achieved. For our experimental conditions, Lpp'OmpA chimaera has proved to be an efficient surface display system for the homologous passenger proteins although cell lysis and phenotype heterogeneity were observed. Finally, AIDA-I was found to be the best surface display system for mature lipoproteins (especially heterologous ones) in the E. coli host strain with no inhibition of growth and only limited phenotype heterogeneity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Proteínas Bacterianas/ultraestructura , Membrana Celular/metabolismo , Escherichia coli/ultraestructura , Ingeniería Genética , Proteínas Recombinantes de Fusión/metabolismo
7.
FASEB J ; 33(11): 12099-12111, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31442074

RESUMEN

The 4 component meningococcus B vaccine (4CMenB) vaccine is the first vaccine containing recombinant proteins licensed for the prevention of invasive meningococcal disease caused by meningococcal serogroup B strains. 4CMenB contains 3 main recombinant proteins, including the Neisseria meningitidis factor H binding protein (fHbp), a lipoprotein able to bind the human factor H. To date, over 1000 aa sequences of fHbp have been identified, and they can be divided into variant groups 1, 2, and 3, which are usually not crossprotective. Nevertheless, previous characterizations of a small set (n = 10) of mAbs generated in humans after 4CMenB immunization revealed 2 human Fabs (huFabs) (1A12, 1G3) with some crossreactivity for variants 1, 2, and 3. This unexpected result prompted us to examine a much larger set of human mAbs (n = 110), with the aim of better understanding the extent and nature of crossreactive anti-fHbp antibodies. In this study, we report an analysis of the human antibody response to fHbp, by the characterization of 110 huFabs collected from 3 adult vaccinees during a 6-mo study. Although the 4CMenB vaccine contains fHbp variant 1, 13 huFabs were also found to be crossreactive with variants 2 and 3. The crystal structure of the crossreactive huFab 1E6 in complex with fHbp variant 3 was determined, revealing a novel, highly conserved epitope distinct from the epitopes recognized by 1A12 or 1G3. Further, functional characterization shows that human mAb 1E6 is able to elicit rabbit, but not human, complement-mediated bactericidal activity against meningococci displaying fHbp from any of the 3 different variant groups. This functional and structural information about the human antibody response upon 4CMenB immunization contributes to further unraveling the immunogenic properties of fHbp. Knowledge gained about the epitope profile recognized by the human antibody repertoire could guide future vaccine design.-Bianchi, F., Veggi, D., Santini, L., Buricchi, F., Bartolini, E., Lo Surdo, P., Martinelli, M., Finco, O., Masignani, V., Bottomley, M. J., Maione, D., Cozzi, R. Cocrystal structure of meningococcal factor H binding protein variant 3 reveals a new crossprotective epitope recognized by human mAb 1E6.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Factor H de Complemento/inmunología , Epítopos/inmunología , Vacunas Meningococicas/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Cristalografía por Rayos X , Epítopos/genética , Epítopos/metabolismo , Variación Genética , Humanos , Infecciones Meningocócicas/microbiología , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/administración & dosificación , Modelos Moleculares , Neisseria meningitidis/efectos de los fármacos , Neisseria meningitidis/inmunología , Neisseria meningitidis/fisiología , Unión Proteica , Conformación Proteica
8.
J Virol ; 90(10): 4926-38, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26937030

RESUMEN

UNLABELLED: Human cytomegalovirus (HCMV) is a major cause of morbidity and mortality in transplant patients and is the leading viral cause of birth defects after congenital infection. HCMV infection relies on the recognition of cell-specific receptors by one of the viral envelope glycoprotein complexes. Either the gH/gL/gO or the gH/gL/UL128/UL130/UL131A (Pentamer) complex has been found to fulfill this role, accounting for HCMV entry into almost all cell types. We have studied the UL116 gene product, a putative open reading frame identified by in silico analysis and predicted to code for a secreted protein. Virus infection experiments in mammalian cells demonstrated that UL116 is expressed late in the HCMV replication cycle and is a heavily glycosylated protein that first localizes to the cellular site of virus assembly and then inserts into the virion envelope. Transient-transfection studies revealed that UL116 is efficiently transported to the plasma membrane when coexpressed with gH and that gL competes with UL116 for gH binding. Further evidence for gH/UL116 complex formation was obtained by coimmunoprecipitation experiments on both transfected and infected cells and biochemical characterization of the purified complex. In summary, our results show that the product of the UL116 gene is an HCMV envelope glycoprotein that forms a novel gH-based complex alternative to gH/gL. Remarkably, the gH/UL116 complex is the first herpesvirus gH-based gL-less complex. IMPORTANCE: HCMV infection can cause severe disease in immunocompromised adults and infants infected in utero The dissection of the HCMV entry machinery is important to understand the mechanism of viral infection and to identify new vaccine antigens. The gH/gL/gO and gH/gL/UL128/UL130/UL131 (Pentamer) complexes play a key role in HCMV cell entry and tropism. Both complexes are formed by an invariant gH/gL scaffold on which the other subunits assemble. Here, we show that the UL116 gene product is expressed in infected cells and forms a heterodimer with gH. The gH/UL116 complex is carried on the infectious virions, although in smaller amounts than gH/gL complexes. No gH/UL116/gL ternary complex formed in transfected cells, suggesting that the gH/UL116 complex is independent from gL. This new gH-based gL-free complex represents a potential target for a protective HCMV vaccine and opens new perspectives on the comprehension of the HCMV cell entry mechanism and tropism.


Asunto(s)
Citomegalovirus/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Animales , Línea Celular , Citomegalovirus/química , Genoma Viral , Humanos , Microscopía Electrónica , Mutación , Multimerización de Proteína , Transfección , Proteínas del Envoltorio Viral/química , Ensamble de Virus , Internalización del Virus
9.
Mol Cell Proteomics ; 14(2): 418-29, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25368410

RESUMEN

New generation vaccines are in demand to include only the key antigens sufficient to confer protective immunity among the plethora of pathogen molecules. In the last decade, large-scale genomics-based technologies have emerged. Among them, the Reverse Vaccinology approach was successfully applied to the development of an innovative vaccine against Neisseria meningitidis serogroup B, now available on the market with the commercial name BEXSERO® (Novartis Vaccines). The limiting step of such approaches is the number of antigens to be tested in in vivo models. Several laboratories have been trying to refine the original approach in order to get to the identification of the relevant antigens straight from the genome. Here we report a new bioinformatics tool that moves a first step in this direction. The tool has been developed by identifying structural/functional features recurring in known bacterial protective antigens, the so called "Protectome space," and using such "protective signatures" for protective antigen discovery. In particular, we applied this new approach to Staphylococcus aureus and Group B Streptococcus and we show that not only already known protective antigens were re-discovered, but also two new protective antigens were identified.


Asunto(s)
Vacunas Bacterianas/inmunología , Biología Computacional/métodos , Proteoma/inmunología , 5'-Nucleotidasa/metabolismo , Animales , Proteínas Bacterianas/inmunología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Ratones , Neisseria meningitidis Serogrupo B/inmunología , Señales de Clasificación de Proteína , Reproducibilidad de los Resultados , Staphylococcus aureus/inmunología , Streptococcus agalactiae/inmunología
10.
J Struct Funct Genomics ; 17(2-3): 57-66, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27507291

RESUMEN

Nowadays, in scientific fields such as Structural Biology or Vaccinology, there is an increasing need of fast, effective and reproducible gene cloning and expression processes. Consequently, the implementation of robotic platforms enabling the automation of protocols is becoming a pressing demand. The main goal of our study was to set up a robotic platform devoted to the high-throughput automation of the polymerase incomplete primer extension cloning method, and to evaluate its efficiency compared to that achieved manually, by selecting a set of bacterial genes that were processed either in the automated platform (330) or manually (94). Here we show that we successfully set up a platform able to complete, with high efficiency, a wide range of molecular biology and biochemical steps. 329 gene targets (99 %) were effectively amplified using the automated procedure and 286 (87 %) of these PCR products were successfully cloned in expression vectors, with cloning success rates being higher for the automated protocols respect to the manual procedure (93.6 and 74.5 %, respectively).


Asunto(s)
Automatización de Laboratorios/instrumentación , Clonación Molecular/métodos , Vectores Genéticos , Automatización de Laboratorios/métodos , Reacción en Cadena de la Polimerasa/instrumentación , Reacción en Cadena de la Polimerasa/métodos
11.
Clin Infect Dis ; 63(6): 746-753, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27402816

RESUMEN

BACKGROUND: Group B Streptococcus (GBS) is a major cause of neonatal sepsis and meningitis. A vaccine targeting pregnant women could protect infants through placentally transferred antibodies. The association between GBS maternal antibody concentrations and the risk of neonatal infection has been investigated in US and African populations. Here we studied naturally acquired immunoglobulin G (IgG) responses to GBS capsular polysaccharides (CPS) and pilus proteins in European pregnant women. METHODS: Maternal sera were prospectively collected in 8 EU countries from 473 GBS non-colonized and 984 colonized pregnant women who delivered healthy neonates and from 153 mothers of infants with GBS disease. GBS strains from these colonized women and infected infants were obtained in parallel and their capsular and pilus types were identified by serological and molecular methods. Maternal serum concentrations of IgG anti- Ia, -Ib, -III and -V polysaccharides and anti-BP-1, -AP1-2a and -BP-2b pilus proteins were determined by enzyme-linked immunosorbent assay. Antibody functional activity was quantified by Opsonophagocytic Killing Assay. RESULTS: Antibody levels against CPS and pilus proteins were significantly higher in GBS colonized women delivering healthy babies than in mothers of neonates with GBS disease or non-colonized women. Moreover, maternal anti-capsular IgG concentrations showed a significant correlation with functional titers measured by Opsonophagocytic Killing Assay. CONCLUSIONS: Maternal anti-capsular IgG concentrations above 1 µg/mL mediated GBS killing in vitro and were predicted to respectively reduce by 81% (95% confidence interval, 40%-100%) and 78% (45%-100%) the risk of GBS Ia and III early-onset disease in Europe.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Fimbrias Bacterianas/inmunología , Inmunidad Materno-Adquirida , Polisacáridos Bacterianos/inmunología , Infecciones Estreptocócicas/inmunología , Streptococcus agalactiae/inmunología , Europa (Continente)/epidemiología , Femenino , Humanos , Inmunoglobulina G/sangre , Embarazo , Estudios Prospectivos , Infecciones Estreptocócicas/epidemiología
12.
Immunol Cell Biol ; 94(9): 849-860, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27192938

RESUMEN

Human cytomegalovirus (HCMV) is known to exert suppressive effects on the host immune system through expression of various viral genes, thus directly and indirectly affecting antiviral immunity of the infected individuals. We report here that HCMV UL10 encodes a protein (pUL10) with immunosuppressive properties. UL10 has been classified as a member of the HCMV RL11 gene family. Although pUL10 is known to be dispensable for viral replication in cultured cells, its amino-acid sequence is well conserved among different HCMV isolates, suggesting that the protein has a crucial role in viral survival in the host environment. We show that pUL10 is cleaved from the cell surface of fibroblasts as well as epithelial cells and interacts with a cellular receptor ubiquitously expressed on the surface of human leukocytes, demonstrated by ex vivo cell-based assays and flow cytometric analyses on both lymphoid cell lines and primary blood cells. Furthermore, preincubation of peripheral blood mononuclear cells with purified pUL10 ectodomain results in significantly impaired proliferation and substantially reduced pro-inflammatory cytokine production, in particular in CD4+ T cells upon in vitro T-cell stimulation. The inhibitory effect of pUL10 is also observed on antigen receptor-mediated intracellular tyrosine phosphorylation in a T-cell line. Based on these observations, we suggest that pUL10 is a newly identified immunomodulatory protein encoded by HCMV. Further elucidation of interactions between pUL10 and the host immune system during HCMV may contribute to finding ways towards new therapies for HCMV infection.


Asunto(s)
Proteínas de la Cápside/metabolismo , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Secuencia de Aminoácidos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proteínas de la Cápside/química , Línea Celular , Membrana Celular/metabolismo , Proliferación Celular , Citocinas/biosíntesis , Glicosilación , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal
13.
FASEB J ; 29(11): 4629-40, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26202865

RESUMEN

Group B Streptococcus (GBS) expresses 3 structurally distinct pilus types (1, 2a, and 2b) identified as important virulence factors and vaccine targets. These pili are heterotrimeric polymers, covalently assembled on the cell wall by sortase (Srt) enzymes. We investigated the pilus-2b biogenesis mechanism by using a multidisciplinary approach integrating genetic, biochemical, and structural studies to dissect the role of the 2 pilus-2b-associated Srts. We show that only 1 sortase (SrtC1-2b) is responsible for pilus protein polymerization, whereas the second one (Srt2-2b) does not act as a pilin polymerase, but similarly to the housekeeping class A Srt (SrtA), it is involved in cell-wall pilus anchoring by targeting the minor ancillary subunit. Based on its function and sequence features, Srt2-2b does not belong to class C Srts (SrtCs), nor is it a canonical member of any other known family of Srts. We also report the crystal structure of SrtC1-2b at 1.9 Å resolution. The overall fold resembles the typical structure of SrtCs except for the N-terminal lid region that appears in an open conformation displaced from the active site. Our findings reveal that GBS pilus type 2b biogenesis differs significantly from the current model of pilus assembly in gram-positive pathogens.


Asunto(s)
Proteínas Bacterianas/química , Cisteína Endopeptidasas/química , Fimbrias Bacterianas/enzimología , Streptococcus agalactiae/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Fimbrias Bacterianas/genética , Estructura Terciaria de Proteína , Streptococcus agalactiae/genética
14.
Immunology ; 146(2): 312-26, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26173587

RESUMEN

Self-amplifying mRNAs (SAM(®) ) are a novel class of nucleic acid vaccines, delivered by a non-viral delivery system. They are effective at eliciting potent and protective immune responses and are being developed as a platform technology with potential to be used for a broad range of targets. However, their mechanism of action has not been fully elucidated. To date, no evidence of in vivo transduction of professional antigen-presenting cells (APCs) by SAM vector has been reported, while the antigen expression has been shown to occur mostly in the muscle fibres. Here we show that bone-marrow-derived APCs rather than muscle cells are responsible for induction of MHC class-I restricted CD8 T cells in vivo, but direct transfection of APCs by SAM vectors is not required. Based on all our in vivo and in vitro data we propose that upon SAM vaccination the antigen is expressed within muscle cells and then transferred to APCs, suggesting cross-priming as the prevalent mechanism for priming the CD8 T-cell response by SAM vaccines.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Células de la Médula Ósea/inmunología , Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Fibras Musculares Esqueléticas/inmunología , ARN Mensajero/inmunología , ARN Viral/inmunología , Proteínas de Unión al ARN/inmunología , Proteínas del Núcleo Viral/inmunología , Animales , Células Presentadoras de Antígenos/virología , Células de la Médula Ósea/virología , Trasplante de Médula Ósea , Linfocitos T CD8-positivos/virología , Comunicación Celular , Línea Celular , Cricetinae , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Subtipo H1N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Musculares Esqueléticas/virología , Proteínas de la Nucleocápside , ARN Mensajero/genética , ARN Viral/genética , Proteínas de Unión al ARN/genética , Transfección , Quimera por Trasplante , Proteínas del Núcleo Viral/genética
15.
Appl Environ Microbiol ; 80(7): 2176-85, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24487536

RESUMEN

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30 to 76% of the cases of neonatal meningitis. In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low-, and non-biofilm-forming strains, and to facilitate interpretation of data. This protocol was used to screen the biofilm-forming abilities of 366 GBS clinical isolates from pregnant women and from neonatal infections of different serotypes in relation to medium composition and pH. The results identified a subset of isolates of serotypes III and V that formed strong biofilms under acidic conditions. Importantly, the best biofilm formers belonged to serotype III hypervirulent clone ST-17. Moreover, the abilities of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm initiation and contribute to biofilm structural stability.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Streptococcus agalactiae/efectos de los fármacos , Streptococcus agalactiae/fisiología , Proteínas Bacterianas/metabolismo , Técnicas Bacteriológicas/métodos , Endopeptidasa K/metabolismo , Femenino , Humanos , Concentración de Iones de Hidrógeno , Recién Nacido , Tamizaje Masivo/métodos , Embarazo , Proteolisis , Infecciones Estreptocócicas/microbiología , Streptococcus agalactiae/aislamiento & purificación
16.
FASEB J ; 27(8): 3144-54, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23631841

RESUMEN

Gram-positive bacteria build pili on their cell surface via a class C sortase-catalyzed transpeptidation mechanism from pilin protein substrates. Despite the availability of several crystal structures, pilus-related C sortases remain poorly characterized to date, and their mechanisms of transpeptidation and regulation need to be further investigated. The available 3-dimensional structures of these enzymes reveal a typical sortase fold, except for the presence of a unique feature represented by an N-terminal highly flexible loop known as the "lid." This region interacts with the residues composing the catalytic triad and covers the active site, thus maintaining the enzyme in an autoinhibited state and preventing the accessibility to the substrate. It is believed that enzyme activation may occur only after lid displacement from the catalytic domain. In this work, we provide the first direct evidence of the regulatory role of the lid, demonstrating that it is possible to obtain in vitro an efficient polymerization of pilin subunits using an active C sortase lid mutant carrying a single residue mutation in the lid region. Moreover, biochemical analyses of this recombinant mutant reveal that the lid confers thermodynamic and proteolytic stability to the enzyme.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Fimbrias Bacterianas/enzimología , Streptococcus agalactiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Aminoaciltransferasas/química , Aminoaciltransferasas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Western Blotting , Dominio Catalítico , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fluorometría , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación , Filogenia , Polimerizacion , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteolisis , Streptococcus agalactiae/genética
17.
PLoS Comput Biol ; 9(6): e1003115, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825940

RESUMEN

The pilus 2a backbone protein (BP-2a) is one of the most structurally and functionally characterized components of a potential vaccine formulation against Group B Streptococcus. It is characterized by six main immunologically distinct allelic variants, each inducing variant-specific protection. To investigate the molecular determinants driving the variant immunogenic specificity of BP-2a, in terms of single residue contributions, we generated six monoclonal antibodies against a specific protein variant based on their capability to recognize the polymerized pili structure on the bacterial surface. Three mAbs were also able to induce complement-dependent opsonophagocytosis killing of live GBS and target the same linear epitope present in the structurally defined and immunodominant domain D3 of the protein. Molecular docking between the modelled scFv antibody sequences and the BP-2a crystal structure revealed the potential role at the binding interface of some non-conserved antigen residues. Mutagenesis analysis confirmed the necessity of a perfect balance between charges, size and polarity at the binding interface to obtain specific binding of mAbs to the protein antigen for a neutralizing response.


Asunto(s)
Proteínas Bacterianas/metabolismo , Streptococcus agalactiae/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Mapeo Epitopo , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Fagocitosis , Homología de Secuencia de Aminoácido , Streptococcus agalactiae/inmunología
18.
Proc Natl Acad Sci U S A ; 108(25): 10278-83, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21593422

RESUMEN

Structural vaccinology is an emerging strategy for the rational design of vaccine candidates. We successfully applied structural vaccinology to design a fully synthetic protein with multivalent protection activity. In Group B Streptococcus, cell-surface pili have aroused great interest because of their direct roles in virulence and importance as protective antigens. The backbone subunit of type 2a pilus (BP-2a) is present in six immunogenically different but structurally similar variants. We determined the 3D structure of one of the variants, and experimentally demonstrated that protective antibodies specifically recognize one of the four domains that comprise the protein. We therefore constructed a synthetic protein constituted by the protective domain of each one of the six variants and showed that the chimeric protein protects mice against the challenge with all of the type 2a pilus-carrying strains. This work demonstrates the power of structural vaccinology and will facilitate the development of an optimized, broadly protective pilus-based vaccine against Group B Streptococcus by combining the uniquely generated chimeric protein with protective pilin subunits from two other previously identified pilus types. In addition, this work describes a template procedure that can be followed to develop vaccines against other bacterial pathogens.


Asunto(s)
Vacunas Bacterianas/síntesis química , Proteínas Fimbrias/química , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/síntesis química , Infecciones Estreptocócicas/prevención & control , Streptococcus agalactiae/inmunología , Animales , Vacunas Bacterianas/química , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/uso terapéutico , Cristalografía por Rayos X , Femenino , Proteínas Fimbrias/inmunología , Fimbrias Bacterianas/química , Fimbrias Bacterianas/inmunología , Ratones , Modelos Moleculares , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/inmunología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/uso terapéutico , Infecciones Estreptocócicas/inmunología
19.
FASEB Bioadv ; 6(8): 235-248, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114449

RESUMEN

Thousands of disease cases and hundreds of deaths occur globally each year due to invasive meningococcal disease. Neisseria meningitidis serogroup B (MenB) is the leading cause of such disease in developed countries. Two vaccines, 4CMenB and MenB-fHbp, that protect against MenB are available and include one or two forms respectively of factor H binding protein (fHbp), a key protective antigen. Studies of circulating meningococci have identified over 1380 different fHbp amino acid sequences, which form three immunologically distinct clusters, termed variants 1, 2, and 3. Neither of the current vaccines contains a variant 2 antigen, which is less well characterized than fHbp variants 1 and 3. We characterized the interaction of fHbp variant 2 with humAb 1B1 using biochemical methods and live meningococcal assays. Further, we determined the crystal structure of the complex at 2.4 Å resolution, clearly revealing the epitope and providing the first detailed report of an antibody with distinct specificity for fHbp variant 2. Extensive mutagenesis and binding studies elucidated key hotspots in the interface. This combination of structural and functional studies provides a molecular explanation for the bactericidal potency and specificity of humAb 1B1 for fHbp variant 2. Our studies, focused on fHbp variant 2, expand the understanding of this previously under characterized group of the vast family of variants of fHbp, a virulence factor present on all meningococci. Moreover, the definition of a protective conformational epitope on fHbp variant 2 may support the design and development of novel variant 2-containing MenB vaccines affording greater breadth of protection.

20.
mBio ; 15(8): e0110724, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39041817

RESUMEN

Neisserial adhesin A (NadA) is a meningococcal surface protein included as recombinant antigen in 4CMenB, a protein-based vaccine able to induce protective immune responses against Neisseria meningitidis serogroup B (MenB). Although NadA is involved in the adhesion/invasion of epithelial cells and human myeloid cells, its function in meningococcal physiology is still poorly understood. To clarify the role played by NadA in the host-pathogen interaction, we sought to identify its cellular receptors. We screened a protein microarray encompassing 2,846 human and 297 mouse surface/secreted recombinant proteins using recombinant NadA as probe. Efficient NadA binding was revealed on the paired sialic acid-binding immunoglobulin-type lectins receptors 5 and 14 (Siglec-5 and Siglec-14), but not on Siglec-9 therein used as control. The interaction was confirmed by biochemical tools with the determination of the KD value in the order of nanomolar and the identification of the NadA binding site by hydrogen-deuterium exchange coupled to mass spectrometry. The N-terminal domain of the Siglec-5 that recognizes the sialic acid was identified as the NadA binding domain. Intriguingly, exogenously added recombinant soluble Siglecs, including Siglec-9, were found to decorate N. meningitidis surface in a NadA-dependent manner. However, Siglec-5 and Siglec-14 transiently expressed in CHO-K1 cells endorsed NadA binding and increased N. meningitidis adhesion/invasion while Siglec-9 did not. Taken together, Siglec-5 and Siglec-14 satisfy all features of NadA receptors suggesting a possible role of NadA in the acute meningococcal infection.IMPORTANCEBacteria have developed several strategies for cell colonization and immune evasion. Knowledge of the host and pathogen factors involved in these mechanisms is crucial to build efficacious countermoves. Neisserial adhesin A (NadA) is a meningococcal surface protein included in the anti-meningococcus B vaccine 4CMenB, which mediates adhesion to and invasion of epithelial cells. Although NadA has been shown to bind to other cell types, like myeloid and endothelial cells, it still remains orphan of a defined host receptor. We have identified two strong NadA interactors, Siglec-5 and Siglec-14, which are mainly expressed on myeloid cells. This showcases that NadA is an additional and key player among the Neisseria meningitidis factors targeting immune cells. We thus provide novel insights on the strategies exploited by N. meningitidis during the infection process, which can progress to a severe illness and death.


Asunto(s)
Adhesinas Bacterianas , Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Adhesión Bacteriana , Interacciones Huésped-Patógeno , Lectinas , Humanos , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Lectinas/metabolismo , Lectinas/genética , Lectinas/inmunología , Animales , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos de Diferenciación Mielomonocítica/genética , Unión Proteica , Ratones , Células CHO , Cricetulus , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Neisseria meningitidis/inmunología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Infecciones Meningocócicas/microbiología , Infecciones Meningocócicas/inmunología , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/inmunología , Neisseria meningitidis Serogrupo B/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA