Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(6): 1346-1363.e21, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32473126

RESUMEN

Enhanced blood vessel (BV) formation is thought to drive tumor growth through elevated nutrient delivery. However, this observation has overlooked potential roles for mural cells in directly affecting tumor growth independent of BV function. Here we provide clinical data correlating high percentages of mural-ß3-integrin-negative tumor BVs with increased tumor sizes but no effect on BV numbers. Mural-ß3-integrin loss also enhances tumor growth in implanted and autochthonous mouse tumor models with no detectable effects on BV numbers or function. At a molecular level, mural-cell ß3-integrin loss enhances signaling via FAK-p-HGFR-p-Akt-p-p65, driving CXCL1, CCL2, and TIMP-1 production. In particular, mural-cell-derived CCL2 stimulates tumor cell MEK1-ERK1/2-ROCK2-dependent signaling and enhances tumor cell survival and tumor growth. Overall, our data indicate that mural cells can control tumor growth via paracrine signals regulated by ß3-integrin, providing a previously unrecognized mechanism of cancer growth control.


Asunto(s)
Integrina beta3/metabolismo , Neoplasias/metabolismo , Carga Tumoral/fisiología , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Femenino , Humanos , Masculino , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
2.
Cell ; 176(4): 757-774.e23, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30712866

RESUMEN

ROCK-Myosin II drives fast rounded-amoeboid migration in cancer cells during metastatic dissemination. Analysis of human melanoma biopsies revealed that amoeboid melanoma cells with high Myosin II activity are predominant in the invasive fronts of primary tumors in proximity to CD206+CD163+ tumor-associated macrophages and vessels. Proteomic analysis shows that ROCK-Myosin II activity in amoeboid cancer cells controls an immunomodulatory secretome, enabling the recruitment of monocytes and their differentiation into tumor-promoting macrophages. Both amoeboid cancer cells and their associated macrophages support an abnormal vasculature, which ultimately facilitates tumor progression. Mechanistically, amoeboid cancer cells perpetuate their behavior via ROCK-Myosin II-driven IL-1α secretion and NF-κB activation. Using an array of tumor models, we show that high Myosin II activity in tumor cells reprograms the innate immune microenvironment to support tumor growth. We describe an unexpected role for Myosin II dynamics in cancer cells controlling myeloid function via secreted factors.


Asunto(s)
Movimiento Celular/fisiología , Miosina Tipo II/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular/inmunología , Proteínas del Citoesqueleto , Femenino , Humanos , Interleucina-1alfa/metabolismo , Masculino , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Persona de Mediana Edad , FN-kappa B/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Fosforilación , Proteómica , Receptor Cross-Talk/fisiología , Transducción de Señal , Microambiente Tumoral/inmunología
3.
Physiol Rev ; 102(1): 455-510, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34541899

RESUMEN

Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. Cancer is a multistep disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signaling in cancer in every step of disease progression. Rho GTPases contribute to tumor initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence, and cancer cell stemness. Rho GTPases play a major role in cell migration and in the metastatic process. They are also involved in interactions with the tumor microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias/tratamiento farmacológico , Microambiente Tumoral/fisiología , Proteínas de Unión al GTP rho/metabolismo , Animales , Movimiento Celular/fisiología , Transformación Celular Neoplásica/inmunología , Humanos , Transducción de Señal/genética
4.
Exp Dermatol ; 31(1): 82-88, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34185923

RESUMEN

Abnormal cell migration and invasion underlie metastatic dissemination, one of the major challenges for cancer treatment. Melanoma is one of the deadliest and most aggressive forms of skin cancer due in part to its migratory and metastatic potential. Cancer cells use a variety of migratory strategies regulated by cytoskeletal remodelling. In particular, we discuss the importance of amoeboid invasive melanoma strategies, since they have been identified at the edge of human melanomas. We hypothesize that the presence of amoeboid melanoma cells will favour tumor progression since they are invasive and metastatic; they support immunosuppression; they harbour cancer stem cell properties and they are involved in therapy resistance. The Rho-ROCK-Myosin II pathway is key to maintain amoeboid melanoma invasion but this pathway is further regulated by pro-tumorigenic/pro-metastatic/pro-survival signalling pathways such as JAK-STAT3, TGFß-SMAD, NF-κB, Wnt11/5-FDZ7 and BRAFV600E -MEK-ERK. These pathways support amoeboid behaviour and are actionable in the clinic. After melanoma wide surgical margin removal, we propose that possible remaining melanoma cells should be eradicated using anti-amoeboid therapies.


Asunto(s)
Melanoma/terapia , Neoplasias Cutáneas/terapia , Movimiento Celular , Terapia Combinada , Humanos , Melanoma/secundario , Neoplasias Cutáneas/patología , Microambiente Tumoral
5.
Br J Cancer ; 125(5): 699-713, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34172930

RESUMEN

BACKGROUND: Metastasis is a hallmark of cancer and responsible for most cancer deaths. Migrastatics were defined as drugs interfering with all modes of cancer cell invasion and thus cancers' ability to metastasise. First anti-metastatic treatments have recently been approved. METHODS: We used bioinformatic analyses of publicly available melanoma databases. Experimentally, we performed in vitro target validation (including 2.5D cell morphology analysis and mass spectrometric analysis of RhoA binding partners), developed a new traceable spontaneously metastasising murine melanoma model for in vivo validation, and employed histology (haematoxylin/eosin and phospho-myosin II staining) to confirm drug action in harvested tumour tissues. RESULTS: Unbiased and targeted bioinformatic analyses identified the Rho kinase (ROCK)-myosin II pathway and its various components as potentially relevant targets in melanoma. In vitro validation demonstrated redundancy of several RhoGEFs upstream of RhoA and confirmed ROCK as a druggable target downstream of RhoA. The anti-metastatic effects of two ROCK inhibitors were demonstrated through in vivo melanoma metastasis tracking and inhibitor effects also confirmed ex vivo by digital pathology. CONCLUSIONS: We proposed a migrastatic drug development pipeline. As part of the pipeline, we provide a new traceable spontaneous melanoma metastasis model for in vivo quantification of metastasis and anti-metastatic effects by non-invasive imaging.


Asunto(s)
Biología Computacional/métodos , Melanoma/tratamiento farmacológico , Miosina Tipo II/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Masculino , Espectrometría de Masas , Melanoma/metabolismo , Ratones , Metástasis de la Neoplasia , Mapas de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Acta Derm Venereol ; 101(11): adv00597, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34643739

RESUMEN

BRAF/V600E mutation and other cell growth/growth-control mechanisms are involved in naevogenesis and melanomagenesis. Immunoexpression of BRAF/V600E and other molecules (p16, phosphatase and tensin homologue (PTEN), Ki67, hTERT and Cav3.1 and 3.2 calcium channels) were investigated in 80 histopatho-logically and dermoscopically classified acquired naevi. Regarding BRAF/V600E, dysplastic naevi showed lower immunostaining than common naevi, which was significant in comparison with intradermal naevi, which showed the highest BRAF/V600E histoscore. Junctional naevi showed the lowest BRAF/V600E levels. Globular/cobblestone and reticular dermoscopic patterns were consistently associated with high and low BRAF/V600E immunoexpression, respectively, but Zalaudek's peripheral globule pattern (CR/PG) showed the highest BRAF/V600E immunoexpression. Among global patterns, the previously not investigated multicomponent pattern showed the lowest BRAF/V600E immunoexpression. Regarding the remaining biomarkers, new immunohistochemical features were found, in particular p16 and PTEN low expression in multicomponent pattern; and Ki67, hTERT and Cav.3.1 high expression in CR/PG. In conclusion, histopathology and dermoscopy provide complementary information regarding the biology of melanocytic naevi.


Asunto(s)
Canales de Calcio Tipo T , Nevo Pigmentado , Neoplasias Cutáneas , Biomarcadores , Dermoscopía , Humanos , Fosfohidrolasa PTEN , Proteínas Proto-Oncogénicas B-raf/genética
7.
J Pathol ; 249(4): 523-535, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31424556

RESUMEN

Coronary microvascular dysfunction combined with maladaptive cardiomyocyte morphology and energetics is a major contributor to heart failure advancement. Thus, dually enhancing cardiac angiogenesis and targeting cardiomyocyte function to slow, or reverse, the development of heart failure is a logical step towards improved therapy. We present evidence for the potential to repurpose a former anti-cancer Arg-Gly-Asp (RGD)-mimetic pentapeptide, cilengitide, here used at low doses. Cilengitide targets αvß3 integrin and this protein is upregulated in human dilated and ischaemic cardiomyopathies. Treatment of mice after abdominal aortic constriction (AAC) surgery with low-dose cilengitide (ldCil) enhances coronary angiogenesis and directly affects cardiomyocyte hypertrophy with an associated reduction in disease severity. At a molecular level, ldCil treatment has a direct effect on cardiac endothelial cell transcriptomic profiles, with a significant enhancement of pro-angiogenic signalling pathways, corroborating the enhanced angiogenic phenotype after ldCil treatment. Moreover, ldCil treatment of Angiotensin II-stimulated AngII-stimulated cardiomyocytes significantly restores transcriptomic profiles similar to those found in normal human heart. The significance of this finding is enhanced by transcriptional similarities between AngII-treated cardiomyocytes and failing human hearts. Taken together, our data provide evidence supporting a possible new strategy for improved heart failure treatment using low-dose RGD-mimetics with relevance to human disease. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Fármacos Cardiovasculares/farmacología , Reposicionamiento de Medicamentos , Insuficiencia Cardíaca/tratamiento farmacológico , Integrina alfaVbeta3/antagonistas & inhibidores , Miocitos Cardíacos/efectos de los fármacos , Venenos de Serpiente/farmacología , Angiotensina II/farmacología , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Estudios de Casos y Controles , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Integrina alfaVbeta3/metabolismo , Masculino , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Neovascularización Fisiológica/efectos de los fármacos , Recuperación de la Función , Transducción de Señal , Transcriptoma
8.
J Pathol ; 247(1): 72-85, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30206933

RESUMEN

Many human cancers present Phosphatase and tensin homolog (PTEN) deficiency and between 20 and 30% of colorectal tumors show PTEN loss. The transcription factor, E2 promoter binding factor 1 (E2F-1), exhibits tumor promoter or suppressive functions depending on cellular type and tissue context, but its role in the progression and development of colorectal carcinogenesis was largely unknown. Here, using a tamoxifen-inducible PTEN knockout mouse model, we have demonstrated that loss of PTEN leads to the development of colorectal tumorigenesis through the serrated pathway. Next, we studied PTEN loss-driven colorectal lesions in the context of E2F-1 deficiency in vivo. Our results revealed that monoallelic and biallelic absence of E2F-1 led to an increased incidence and progression of serrated tumorigenesis induced by PTEN loss. Finally, we investigated the mechanisms by which double PTEN/E2F-1 deficiency leads to enhanced tumorigenesis. We found that colorectal tumors from PTEN/E2F-1 double knockout mice and the human colorectal carcinoma cell line HT29 with shRNA-mediated downregulation of PTEN and E2F-1 exhibit hyperactivation of the RAS-MAPK pathway, accumulation of DNA damage and resistance to apoptosis. To date, this is the first preclinical study evaluating the effect of genetic deletion of E2F-1 in colorectal malignancies driven by PTEN deficiency. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Carcinogénesis , Neoplasias Colorrectales/enzimología , Factor de Transcripción E2F1/metabolismo , Fosfohidrolasa PTEN/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Daño del ADN , Factor de Transcripción E2F1/genética , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfohidrolasa PTEN/genética , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Proteínas ras/metabolismo
9.
Methods ; 77-78: 31-40, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25461816

RESUMEN

PTEN is an important tumor suppressor gene. Interpreting PTEN deficiency in the appropriate microscopic context of cancer may be important to understand its role in tumor development and progression. This may be particularly relevant in heterogeneous tumors. Here, we discuss the usefulness of 3D cultures in understanding the consequences of PTEN inactivation in tissue architecture. Afterwards, we discuss the role of immunohistochemistry and fluorescent in situ hybridization in assessing PTEN loss in tumors. In this review, endometrial carcinoma is used as a model.


Asunto(s)
Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Fosfohidrolasa PTEN/deficiencia , Técnicas de Cultivo de Tejidos/métodos , Proteínas Supresoras de Tumor/deficiencia , Animales , Neoplasias Endometriales/genética , Femenino , Humanos , Mutación/genética , Fosfohidrolasa PTEN/genética , Proteínas Supresoras de Tumor/genética
10.
Histopathology ; 65(3): 371-88, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25353038

RESUMEN

AIMS: To check the usefulness of a standardized protocol of PTEN FISH in 31 endometrial carcinomas (ECs) in comparison with SNP array (SNPA), multiplex ligation-dependent probe amplification (MLPA), and immunohistochemistry. METHODS AND RESULTS: Fluorescence in-situ hybridization analysis showed two PTEN copies in 17 cases, three copies in nine cases, hemizygous deletion in two cases, and diverse cell populations with different PTEN copy number in three cases. A good correlation was seen between FISH and SNPA, particularly in cases with three copies. FISH identified two cases with entire deletion of chromosome 10, but did not identify a focal deletion of PTEN. Five cases with PTEN deletion and duplication of the second allele by SNPA were interpreted as normal by FISH. Concordance between FISH and MLPA was seen in 15 cases with two copies, and in two cases with PTEN deletion. Six cases were interpreted as amplified by MLPA, but showed polyploidy by FISH. FISH was superior to SNPA and MLPA in assessing the tumours with diverse cell populations with different PTEN copies. CONCLUSIONS: The results show good concordance between FISH, SNPA and MLPA. SNPA was superior in tumours with deletion of one copy and duplication of the second allele. FISH was superior in assessing tumour heterogeneity.


Asunto(s)
Neoplasias Endometriales/genética , Hibridación Fluorescente in Situ , Fosfohidrolasa PTEN/genética , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/patología , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Femenino , Dosificación de Gen , Genes Supresores de Tumor , Humanos , Inmunohistoquímica , Reacción en Cadena de la Polimerasa Multiplex , Fosfohidrolasa PTEN/metabolismo , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
11.
Commun Med (Lond) ; 4(1): 48, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491101

RESUMEN

BACKGROUND: The objective of this comprehensive pan-cancer study is to evaluate the potential of deep learning (DL) for molecular profiling of multi-omic biomarkers directly from hematoxylin and eosin (H&E)-stained whole slide images. METHODS: A total of 12,093 DL models predicting 4031 multi-omic biomarkers across 32 cancer types were trained and validated. The study included a broad range of genetic, transcriptomic, and proteomic biomarkers, as well as established prognostic markers, molecular subtypes, and clinical outcomes. RESULTS: Here we show that 50% of the models achieve an area under the curve (AUC) of 0.644 or higher. The observed AUC for 25% of the models is at least 0.719 and exceeds 0.834 for the top 5%. Molecular profiling with image-based histomorphological features is generally considered feasible for most of the investigated biomarkers and across different cancer types. The performance appears to be independent of tumor purity, sample size, and class ratio (prevalence), suggesting a degree of inherent predictability in histomorphology. CONCLUSIONS: The results demonstrate that DL holds promise to predict a wide range of biomarkers across the omics spectrum using only H&E-stained histological slides of solid tumors. This paves the way for accelerating diagnosis and developing more precise treatments for cancer patients.


Molecular profiling tests are used to check cancers for changes in certain genes, proteins, or other molecules. Results of such tests can be used to identify the most effective treatment for cancer patients. Faster and more accessible alternatives to standard tests are needed to improve cancer care. This study investigates whether deep learning (DL), a series of advanced computer techniques, can perform molecular profiling directly from routinely-collected images of tumor specimens used for diagnostic purposes. Over 12,000 DL models were utilized to evaluate thousands of biomarkers using statistical approaches. The results indicate that DL can effectively detect molecular changes in a tumor from these images, for many biomarkers and tumor types. The study shows that DL-based molecular profiling from images is possible. Introducing this type of approach into routine clinical workflows could potentially accelerate treatment decisions and improve outcomes.

12.
Nat Cell Biol ; 25(1): 108-119, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36624187

RESUMEN

Metastasis involves dissemination of cancer cells away from a primary tumour and colonization at distal sites. During this process, the mechanical properties of the nucleus must be tuned since they pose a challenge to the negotiation of physical constraints imposed by the microenvironment and tissue structure. We discovered increased expression of the inner nuclear membrane protein LAP1 in metastatic melanoma cells, at the invasive front of human primary melanoma tumours and in metastases. Human cells express two LAP1 isoforms (LAP1B and LAP1C), which differ in their amino terminus. Here, using in vitro and in vivo models that recapitulate human melanoma progression, we found that expression of the shorter isoform, LAP1C, supports nuclear envelope blebbing, constrained migration and invasion by allowing a weaker coupling between the nuclear envelope and the nuclear lamina. We propose that LAP1 renders the nucleus highly adaptable and contributes to melanoma aggressiveness.


Asunto(s)
Melanoma , Membrana Nuclear , Humanos , Isoformas de Proteínas/metabolismo , Movimiento Celular , Membrana Nuclear/metabolismo , Melanoma/genética , Melanoma/metabolismo , Microambiente Tumoral
13.
Nat Commun ; 14(1): 2740, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217519

RESUMEN

Cell migration is crucial for cancer dissemination. We find that AMP-activated protein kinase (AMPK) controls cell migration by acting as an adhesion sensing molecular hub. In 3-dimensional matrices, fast-migrating amoeboid cancer cells exert low adhesion/low traction linked to low ATP/AMP, leading to AMPK activation. In turn, AMPK plays a dual role controlling mitochondrial dynamics and cytoskeletal remodelling. High AMPK activity in low adhering migratory cells, induces mitochondrial fission, resulting in lower oxidative phosphorylation and lower mitochondrial ATP. Concurrently, AMPK inactivates Myosin Phosphatase, increasing Myosin II-dependent amoeboid migration. Reducing adhesion or mitochondrial fusion or activating AMPK induces efficient rounded-amoeboid migration. AMPK inhibition suppresses metastatic potential of amoeboid cancer cells in vivo, while a mitochondrial/AMPK-driven switch is observed in regions of human tumours where amoeboid cells are disseminating. We unveil how mitochondrial dynamics control cell migration and suggest that AMPK is a mechano-metabolic sensor linking energetics and the cytoskeleton.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Dinámicas Mitocondriales , Neoplasias , Humanos , Adenosina Trifosfato/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adhesión Celular , Movimiento Celular/fisiología , Miosina Tipo II/metabolismo , Fosforilación Oxidativa , Fosforilación
14.
Sci Adv ; 9(42): eadi0244, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37851808

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has a very poor prognosis because of its high propensity to metastasize and its immunosuppressive microenvironment. Using a panel of pancreatic cancer cell lines, three-dimensional (3D) invasion systems, microarray gene signatures, microfluidic devices, mouse models, and intravital imaging, we demonstrate that ROCK-Myosin II activity in PDAC cells supports a transcriptional program conferring amoeboid invasive and immunosuppressive traits and in vivo metastatic abilities. Moreover, we find that immune checkpoint CD73 is highly expressed in amoeboid PDAC cells and drives their invasive, metastatic, and immunomodulatory traits. Mechanistically, CD73 activates RhoA-ROCK-Myosin II downstream of PI3K. Tissue microarrays of human PDAC biopsies combined with bioinformatic analysis reveal that rounded-amoeboid invasive cells with high CD73-ROCK-Myosin II activity and their immunosuppressive microenvironment confer poor prognosis to patients. We propose targeting amoeboid PDAC cells as a therapeutic strategy.


Asunto(s)
Adenocarcinoma , Amoeba , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Adenocarcinoma/patología , Amoeba/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Proteínas del Citoesqueleto , Terapia de Inmunosupresión , Miosina Tipo II/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral
15.
STAR Protoc ; 3(4): 101879, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36595909

RESUMEN

Here we describe a multiplex chromogenic immunohistochemistry platform to stain and analyze two markers in paraffin tissue sections from mouse or human. The basis of the protocol is a series of stripping and re-probing steps with subsequent image analysis, which allows the user to perform multiplex imaging in a reliable and affordable manner. Here, we describe specific usage to assess the levels of PD-L1 in tumor-associated macrophages. We have used different antibodies and assessed this protocol for up to five consecutive antibodies per slide. For complete details on the use and execution of this protocol, please refer to Orgaz et al. (2020).1.


Asunto(s)
Colorantes , Parafina , Humanos , Animales , Ratones , Inmunohistoquímica , Procesamiento de Imagen Asistido por Computador , Anticuerpos
16.
Trends Cell Biol ; 32(3): 228-242, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34836782

RESUMEN

Cell migration is essential for many biological processes, while abnormal cell migration is characteristic of cancer cells. Epithelial cells become motile by undergoing epithelial-to-mesenchymal transition (EMT), and mesenchymal cells increase migration speed by adopting amoeboid features. This review highlights how amoeboid behaviour is not merely a migration mode but rather a cellular state - within the EMT spectra - by which cancer cells survive, invade and colonise challenging microenvironments. Molecular biomarkers and physicochemical triggers associated with amoeboid behaviour are discussed, including an amoeboid associated tumour microenvironment. We reflect on how amoeboid characteristics support metastasis and how their liabilities could turn into therapeutic opportunities.


Asunto(s)
Amoeba , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Humanos , Microambiente Tumoral
17.
Cancer Lett ; 544: 215800, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35803476

RESUMEN

Cancer cells thrive when embedded in a fine-tuned cellular and extracellular environment or tumour microenvironment (TME). There is a general understanding of a co-evolution between cancer cells and their surrounding TME, pointing at a functional connection between cancer cells characteristics and the perturbations induced in their surrounding tissue. However, it has never been formally proven whether this functional connection needs to be set from the start or if aggressive cancer cells always dominate their microenvironmental any point in time. This would require a dedicated experimental setting where malignant cells are challenged to grow in a different TME from the one they would naturally create. Here we generated an experimental setting where we transiently perturb the secretory profile of aggressive breast cancer cells without affecting their intrinsic growth ability, which led to the initial establishment of an atypical TME. Interestingly, even if initially tumours are formed, this atypical TME evolves to impair long term in vivo cancer growth. Using a combination of in vivo transcriptomics, protein arrays and in vitro co-cultures, we found that the atypical TME culminates in the infiltration of macrophages with STAT1high activity. These macrophages show strong anti-tumoural functions which reduce long-term tumour growth, despite lacking canonical M1 markers. Importantly, gene signatures of the mesenchymal compartment of the TME, as well as the anti-tumoural macrophages, show striking prognostic power that correlates with less aggressive human breast cancers.


Asunto(s)
Neoplasias de la Mama , Microambiente Tumoral , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Humanos , Macrófagos/patología
18.
Cancer Res ; 82(10): 1909-1925, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35350066

RESUMEN

Despite substantial advances in the treatment of solid cancers, resistance to therapy remains a major obstacle to prolonged progression-free survival. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with a high level of liver metastasis. Primary PDAC is highly hypoxic, and metastases are resistant to first-line treatment, including gemcitabine. Recent studies have indicated that endothelial cell (EC) focal adhesion kinase (FAK) regulates DNA-damaging therapy-induced angiocrine factors and chemosensitivity in primary tumor models. Here, we show that inducible loss of EC-FAK in both orthotopic and spontaneous mouse models of PDAC is not sufficient to affect primary tumor growth but reduces liver and lung metastasis load and improves survival rates in gemcitabine-treated, but not untreated, mice. EC-FAK loss did not affect primary tumor angiogenesis, tumor blood vessel leakage, or early events in metastasis, including the numbers of circulating tumor cells, tumor cell homing, or metastatic seeding. Phosphoproteomics analysis showed a downregulation of the MAPK, RAF, and PAK signaling pathways in gemcitabine-treated FAK-depleted ECs compared with gemcitabine-treated wild-type ECs. Moreover, low levels of EC-FAK correlated with increased survival and reduced relapse in gemcitabine-treated patients with PDAC, supporting the clinical relevance of these findings. Altogether, we have identified a new role of EC-FAK in regulating PDAC metastasis upon gemcitabine treatment that impacts outcome. SIGNIFICANCE: These findings establish the potential utility of combinatorial endothelial cell FAK targeting together with gemcitabine in future clinical applications to control metastasis in patients with pancreatic ductal adenocarcinoma.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Células Endoteliales/patología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Ratones , Recurrencia Local de Neoplasia , Neoplasias Pancreáticas/patología , Gemcitabina , Neoplasias Pancreáticas
19.
Cancers (Basel) ; 13(20)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34680222

RESUMEN

BACKGROUND: Cutaneous melanoma shows high variability regarding clinicopathological presentation, evolution and prognosis. METHODS: Next generation sequencing was performed to analyze hotspot mutations in different areas of primary melanomas (MMp) and their paired metastases. Clinicopathological features were evaluated depending on the degree of variation of the BRAFV600E mutant allele frequency (MAF) in MMp. RESULTS: In our cohort of 14 superficial spreading, 10 nodular melanomas and 52 metastases, 17/24 (71%) melanomas had a BRAFV600E mutation and 5/24 (21%) had a NRASQ61 mutation. We observed a high variation of BRAFV600E MAF (H-BRAFV600E) in 7/17 (41%) MMp. The H-BRAFV600E MMp were all located on the trunk, had lower Breslow and mitotic indexes and predominantly, a first nodal metastasis. Regions with spindled tumor cells (Spin) and high lymphocytic infiltrate (HInf) were more frequent in the H-BRAFV600E patients (4/7; 57%), whereas regions with epithelial tumor cells (Epit) and low lymphocytic infiltrate (LInf) were predominant (6/10; 60%) and exclusive in the low BRAFV600E MAF variation tumors (L-BRAFV600E). The H-BRAFV600E/Spin/HInf MMp patients had better prognostic features and nodal first metastasis. CONCLUSIONS: The H-BRAFV600E MMp were located on the trunk, had better prognostic characteristics, such as lower Breslow and mitotic indexes as well as high lymphocytic infiltrate.

20.
Cancers (Basel) ; 13(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34439122

RESUMEN

As cancer-associated factors, kallikrein-related peptidases (KLKs) are components of the tumour microenvironment, which represents a rich substrate repertoire, and considered attractive targets for the development of novel treatments. Standard-of-care therapy of pancreatic cancer shows unsatisfactory results, indicating the need for alternative therapeutic approaches. We aimed to investigate the expression of KLKs in pancreatic cancer and to inhibit the function of KLK6 in pancreatic cancer cells. KLK6, KLK7, KLK8, KLK10 and KLK11 were coexpressed and upregulated in tissues from pancreatic cancer patients compared to normal pancreas. Their high expression levels correlated with each other and were linked to shorter survival compared to low KLK levels. We then validated KLK6 mRNA and protein expression in patient-derived tissues and pancreatic cancer cells. Coexpression of KLK6 with KRT19, αSMA or CD68 was independent of tumour stage, while KLK6 was coexpressed with KRT19 and CD68 in the invasive tumour area. High KLK6 levels in tumour and CD68+ cells were linked to shorter survival. KLK6 inhibition reduced KLK6 mRNA expression, cell metabolic activity and KLK6 secretion and increased the secretion of other serine and aspartic lysosomal proteases. The association of high KLK levels and poor prognosis suggests that inhibiting KLKs may be a therapeutic strategy for precision medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA