Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neurobiol Dis ; 141: 104943, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32407769

RESUMEN

Huntington's disease (HD) is caused by a highly polymorphic CAG trinucleotide expansion in the gene encoding for the huntingtin protein (HTT). The resulting mutant huntingtin protein (mutHTT) is ubiquitously expressed but also exhibits the ability to propagate from cell-to-cell to disseminate pathology; a property which may serve as a new therapeutic focus. Accordingly, we set out to develop a monoclonal antibody (mAB) targeting a particularly exposed region close to the aa586 caspase-6 cleavage site of the HTT protein. This monoclonal antibody, designated C6-17, effectively binds mutHTT and is able to deplete the protein from cell culture supernatants. Using cell-based assays, we demonstrate that extracellular secretion of mutHTT into cell culture media and its subsequent uptake in recipient HeLa cells can be almost entirely blocked by mAB C6-17. Immunohistochemical stainings of post-mortem HD brain tissue confirmed the specificity of mAB C6-17 to human mutHTT aggregates. These findings demonstrate that mAB C6-17 not only successfully engages with its target, mutHTT, but also inhibits cell uptake suggesting that this antibody could interfere with the pathological processes of mutHTT spreading in vivo.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/inmunología , Enfermedad de Huntington/metabolismo , Animales , Transporte Biológico , Femenino , Células HEK293 , Células HeLa , Humanos , Enfermedad de Huntington/prevención & control , Ratones Endogámicos BALB C , Mutación , Agregación Patológica de Proteínas/inmunología , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/prevención & control
2.
Lancet Neurol ; 19(7): 591-600, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32562684

RESUMEN

BACKGROUND: Robust evidence supports the role of α-synuclein pathology as a driver of neuronal dysfunction in Parkinson's disease. PD01A is a specific active immunotherapy with a short peptide formulation targeted against oligomeric α-synuclein. This phase 1 study assessed the safety and tolerability of the PD01A immunotherapeutic in patients with Parkinson's disease. METHODS: We did a first-in-human, randomised, phase 1 study of immunisations with PD01A, followed by three consecutive study extensions. Patients aged 45-65 years with a clinical diagnosis of Parkinson's disease (≤4 years since diagnosis and Hoehn and Yahr Stage 1 to 2), imaging results (dopamine transporter single photon emission CT and MRI) consistent with their Parkinson's disease diagnosis, and on stable doses of Parkinson's disease medications for at least 3 months were recruited at a single private clinic in Vienna, Austria. Patients were randomly assigned (1:1), using a computer-generated sequence with varying block size, to receive four subcutaneous immunisations with either 15 µg or 75 µg PD01A injected into the upper arms and followed up initially for 52 weeks, followed by a further 39 weeks' follow-up. Patients were then randomly assigned (1:1) again to receive the first booster immunisation at 15 µg or 75 µg and were followed up for 24 weeks. All patients received a second booster immunisation of 75 µg and were followed up for an additional 52 weeks. Patients were masked to dose allocation. Primary (safety) analyses included all treated patients. These four studies were registered with EU Clinical Trials Register, EudraCT numbers 2011-002650-31, 2013-001774-20, 2014-002489-54, and 2015-004854-16. FINDINGS: 32 patients were recruited between Feb 14, 2012, and Feb 6, 2013, and 24 were deemed eligible and randomly assigned to receive four PD01A priming immunisations. One patient had a diagnosis change to multiple system atrophy and was withdrawn and two patients withdrew consent during the studies. 21 (87%) of 24 patients received all six immunisations and completed 221-259 weeks in-study (two patients in the 15 µg dose group and one patient in the 75 µg dose group discontinued). All patients experienced at least one adverse event, but most of them were considered unrelated to study treatment (except for transient local injection site reactions, which affected all but one patient). Serial MRI assessments also ruled out inflammatory processes. Systemic treatment-related adverse events were fatigue (n=4), headache (n=3), myalgia (n=3), muscle rigidity (n=2), and tremor (n=2). The geometric group mean titre of antibodies against the immunising peptide PD01 increased from 1:46 at baseline to 1:3580 at week 12 in the 15 µg dose group, and from 1:76 to 1:2462 at week 12 in the 75 µg dose group. Antibody titres returned to baseline over 2 years, but could be rapidly reactivated after booster immunisation from week 116 onwards, reaching geometric group mean titres up to 1:20218. INTERPRETATION: Repeated administrations of PD01A were safe and well tolerated over an extended period. Specific active immunotherapy resulted in a substantial humoral immune response with target engagement. Phase 2 studies are needed to further assess the safety and efficacy of PD01A for the treatment of Parkinson's disease. FUNDING: AFFiRiS, Michael J Fox Foundation.


Asunto(s)
Inmunoterapia/métodos , Enfermedad de Parkinson/tratamiento farmacológico , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/uso terapéutico , Péptidos/inmunología , Péptidos/uso terapéutico , alfa-Sinucleína/antagonistas & inhibidores , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Método Simple Ciego
3.
J Immunol Methods ; 449: 28-36, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28647457

RESUMEN

Targeting plasma IgE by therapeutic mABs like Omalizumab (Xolair®) is current clinical practice for severe allergic conditions or other IgE related diseases like chronic urticaria. As an alternative to soluble IgE targeting, IgE supply can be lowered by targeting the Extracellular Membrane Proximal Domain (EMPD) of the IgE B cell receptor (BCR) present on IgE switched B cells. This ultimately leads to apoptosis of these cells upon IgE BCR crosslinking. Since tools to selectively assess the efficacy of IgE BCR crosslinking by IgE targeting antibodies are limited, a readily quantifiable cell model was developed that allows to specifically address IgE BCR crosslinking activity in vitro. The new cell model allowed for a direct quantitative comparison of anti-EMPD IgE therapeutic prototype antibody 47H4 with anti-IgE(Ce3) directed therapeutic antibody Omalizumab and with a newly selected anti-human EMPD IgE monoclonal antibody, designated mAB 15cl12. Furthermore, a complementing mouse model was developed that allows for in vivo validation of antibodies addressing human EMPD IgE. It carries a targetable humanized EMPD IgE sequence that has been introduced by seamless genomic replacement of the endogenous EMPD encoding sequence. The model allowed to directly compare IgE lowering activity of two anti-human EMPD IgE therapeutic antibodies in vivo. Our tools provide the means for quantitative assessment of IgE BCR crosslinking activity which is increasingly gaining attention with respect to forthcoming second generation anti-IgE clinical candidates such as Ligelizumab or other clinical candidates featuring additional effector functions such as IgE BCR crosslinking activity.


Asunto(s)
Anticuerpos Antiidiotipos/inmunología , Inmunoglobulina E/química , Inmunoglobulina E/inmunología , Receptores de Antígenos de Linfocitos B/química , Receptores de Antígenos de Linfocitos B/inmunología , Animales , Antialérgicos/química , Antialérgicos/metabolismo , Anticuerpos Antiidiotipos/química , Anticuerpos Antiidiotipos/metabolismo , Reactivos de Enlaces Cruzados , Humanos , Inmunoglobulina E/biosíntesis , Inmunoglobulina E/metabolismo , Ratones , Omalizumab/química , Omalizumab/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo
4.
PLoS One ; 9(12): e114469, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25474576

RESUMEN

BACKGROUND: Low Density Lipoprotein (LDL) hypercholesterolemia, and its associated cardiovascular diseases, are some of the leading causes of death worldwide. The ability of proprotein convertase subtilisin/kexin 9 (PCSK9) to modulate circulating LDL cholesterol (LDLc) concentrations made it a very attractive target for LDLc management. To date, the most advanced approaches for PCSK9 inhibition are monoclonal antibody (mAb) therapies. Although shown to lower LDLc significantly, mAbs face functional limitations because of their relatively short in vivo half-lives necessitating frequent administration. Here, we evaluated the long-term efficacy and safety of PCSK9-specific active vaccines in different preclinical models. METHODS AND FINDING: PCSK9 peptide-based vaccines were successfully selected by our proprietary technology. To test their efficacy, wild-type (wt) mice, Ldlr+/- mice, and rats were immunized with highly immunogenic vaccine candidates. Vaccines induced generation of high-affine PCSK9-specific antibodies in all species. Group mean total cholesterol (TC) concentration was reduced by up to 30%, and LDLc up to 50% in treated animals. Moreover, the PCSK9 vaccine-induced humoral immune response persisted for up to one year in mice, and reduced cholesterol levels significantly throughout the study. Finally, the vaccines were well tolerated in all species tested. CONCLUSIONS: Peptide-based anti-PCSK9 vaccines induce the generation of antibodies that are persistent, high-affine, and functional for up to one year. They are powerful and safe tools for long-term LDLc management, and thus may represent a novel therapeutic approach for the prevention and/or treatment of LDL hypercholesterolemia-related cardiovascular diseases in humans.


Asunto(s)
Hipercolesterolemia/terapia , Proproteína Convertasas/antagonistas & inhibidores , Vacunación , Animales , LDL-Colesterol/sangre , Femenino , Hipercolesterolemia/sangre , Hipercolesterolemia/inmunología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Proproteína Convertasa 9 , Proproteína Convertasas/inmunología , Ratas Wistar , Serina Endopeptidasas/inmunología , Vacunas de Subunidad/uso terapéutico
5.
Cell Res ; 22(3): 539-50, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21946500

RESUMEN

Enucleation of erythroblasts during terminal differentiation is unique to mammals. Although erythroid enucleation has been extensively studied, only a few genes, including retinoblastoma protein (Rb), have been identified to regulate nuclear extrusion. It remains largely undefined by which signaling molecules, the extrinsic stimuli, such as erythropoietin (Epo), are transduced to induce enucleation. Here, we show that p38α, a mitogen-activated protein kinase (MAPK), is required for erythroid enucleation. In an ex vivo differentiation system that contains high Epo levels and mimics stress erythropoiesis, p38α is activated during erythroid differentiation. Loss of p38α completely blocks enucleation of primary erythroblasts. Moreover, p38α regulates erythroblast enucleation in a cell-autonomous manner in vivo during fetal and anemic stress erythropoiesis. Markedly, loss of p38α leads to downregulation of p21, and decreased activation of the p21 target Rb, both of which are important regulators of erythroblast enucleation. This study demonstrates that p38α is a key signaling molecule for erythroblast enucleation during stress erythropoiesis.


Asunto(s)
Eritroblastos/metabolismo , Eritropoyesis , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Eritroblastos/citología , Ratones , Proteína Quinasa 14 Activada por Mitógenos/deficiencia
6.
Proc Natl Acad Sci U S A ; 102(34): 12101-6, 2005 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-16093308

RESUMEN

Genetic manipulation of hematopoietic stem and progenitor cells is an important tool for experimental and clinical applied hematology. However, techniques that allow for gene targeting, subsequent in vitro selection, and expansion of genetically defined clones are available only for ES cells. Such molecularly defined and, hence, "safe" clones would be highly desirable for somatic gene therapy. Here, we demonstrate that in vitro differentiated ES cells completely recapitulate the growth and differentiation properties of adult bone marrow cells, in vitro and in vivo, when ectopically expressing HOXB4. Myeloid development was enforced and (T) lymphoid development suppressed over a wide range of expression levels, whereas only high expression levels of the transcription factor were detrimental for erythroid development. This indicates a close association between the amounts of ectopic HOXB4 present within a progenitor cell and and the decision to self renew or differentiate. Because HOXB4 mediates similar fates of ES-derived and bone marrow hematopoietic stem cells, the primitive embryonic cells can be considered a promising alternative for investigating hematopoietic reconstitution, in vivo, based on well defined clones. Provided that HOXB4 levels are kept within a certain therapeutic window, ES cells also carry the potential of efficient and safe somatic gene therapy.


Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular/fisiología , Expresión Génica , Células Madre Hematopoyéticas/citología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Citometría de Flujo , Vectores Genéticos , Células Madre Hematopoyéticas/metabolismo , Ratones , Retroviridae
7.
Blood ; 104(6): 1873-80, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15166028

RESUMEN

Differentiating embryonic stem (ES) cells are an increasingly important source of hematopoietic progenitors, useful for both basic research and clinical applications. Besides their characterization in colony assays, protocols exist for the cultivation of lymphoid, myeloid, and erythroid cells. With the possible exception of mast cells, however, long-term expansion of pure hematopoietic progenitors from ES cells has not been possible without immortalization caused by overexpression of exogenous genes. Here, we describe for the first time an efficient yet easy strategy to generate mass cultures of pure, immature erythroid progenitors from mouse ES cells (ES-EPs), using serum-free medium plus recombinant cytokines and hormones. ES-EPs represent long-lived, adult, definitive erythroid progenitors that resemble immature erythroid cells expanding in vivo during stress erythropoiesis. When exposed to terminal differentiation conditions, ES-EPs differentiated into mature, enucleated erythrocytes. Importantly, ES-EPs injected into mice did not exhibit tumorigenic potential but differentiated into normal erythrocytes. Both the virtually unlimited supply of cells and the defined culture conditions render our system a valuable tool for the analysis of factors influencing proliferation and maturation of erythroid progenitors. In addition, the system allows detailed characterization of processes during erythroid proliferation and differentiation using wild-type (wt) and genetically modified ES cells.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Eritroblastos/citología , Células Madre/citología , Envejecimiento/fisiología , Animales , Médula Ósea/patología , Células Cultivadas , Eritrocitos/citología , Eritrocitos/metabolismo , Expresión Génica , Hemoglobinas/metabolismo , Hígado/citología , Ratones , Ratones Noqueados , Neoplasias/sangre , Neoplasias/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/deficiencia , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA