Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Med Microbiol Immunol ; 211(1): 71-77, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35061086

RESUMEN

On November 26, 2021, the World Health Organization classified B.1.1.529 as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VoC), named omicron. Spike-gene dropouts in conventional SARS-CoV-2 PCR systems have been reported over the last weeks as indirect diagnostic evidence for the identification of omicron. Here, we report the combination of PCRs specific for heavily mutated sites in the spike gene and nanopore-based full-length genome sequencing for the rapid and sensitive identification of the first four COVID-19 patients diagnosed in Germany to be infected with omicron on November 28, 2021. This study will assist the unambiguous laboratory-based diagnosis and global surveillance for this highly contagious VoC with an unprecedented degree of humoral immune escape. Moreover, we propose that specialized diagnostic laboratories should continuously update their assays for variant-specific PCRs in the spike gene of SARS-CoV-2 to readily detect and diagnose emerging variants of interest and VoCs. The combination with established nanopore sequencing procedures allows both the rapid confirmation by whole genome sequencing as well as the sensitive identification of newly emerging variants of this pandemic ß-coronavirus in years to come.


Asunto(s)
COVID-19 , Secuenciación de Nanoporos , Humanos , Mutación , Reacción en Cadena de la Polimerasa , SARS-CoV-2
2.
Euro Surveill ; 26(43)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34713795

RESUMEN

BackgroundIn the SARS-CoV-2 pandemic, viral genomes are available at unprecedented speed, but spatio-temporal bias in genome sequence sampling precludes phylogeographical inference without additional contextual data.AimWe applied genomic epidemiology to trace SARS-CoV-2 spread on an international, national and local level, to illustrate how transmission chains can be resolved to the level of a single event and single person using integrated sequence data and spatio-temporal metadata.MethodsWe investigated 289 COVID-19 cases at a university hospital in Munich, Germany, between 29 February and 27 May 2020. Using the ARTIC protocol, we obtained near full-length viral genomes from 174 SARS-CoV-2-positive respiratory samples. Phylogenetic analyses using the Auspice software were employed in combination with anamnestic reporting of travel history, interpersonal interactions and perceived high-risk exposures among patients and healthcare workers to characterise cluster outbreaks and establish likely scenarios and timelines of transmission.ResultsWe identified multiple independent introductions in the Munich Metropolitan Region during the first weeks of the first pandemic wave, mainly by travellers returning from popular skiing areas in the Alps. In these early weeks, the rate of presumable hospital-acquired infections among patients and in particular healthcare workers was high (9.6% and 54%, respectively) and we illustrated how transmission chains can be dissected at high resolution combining virus sequences and spatio-temporal networks of human interactions.ConclusionsEarly spread of SARS-CoV-2 in Europe was catalysed by superspreading events and regional hotspots during the winter holiday season. Genomic epidemiology can be employed to trace viral spread and inform effective containment strategies.


Asunto(s)
COVID-19 , Infección Hospitalaria , Infección Hospitalaria/epidemiología , Genoma Viral , Genómica , Alemania/epidemiología , Hospitales , Humanos , Filogenia , SARS-CoV-2
3.
Euro Surveill ; 25(24)2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32583765

RESUMEN

Containment strategies and clinical management of coronavirus disease (COVID-19) patients during the current pandemic depend on reliable diagnostic PCR assays for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we compare 11 different RT-PCR test systems used in seven diagnostic laboratories in Germany in March 2020. While most assays performed well, we identified detection problems in a commonly used assay that may have resulted in false-negative test results during the first weeks of the pandemic.


Asunto(s)
Betacoronavirus/genética , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Equipo para Diagnóstico , Neumonía Viral/diagnóstico , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Técnicas de Laboratorio Clínico/instrumentación , Heces/virología , Alemania , Humanos , Laboratorios , Reacción en Cadena de la Polimerasa Multiplex/instrumentación , Reacción en Cadena de la Polimerasa Multiplex/métodos , Pandemias , Reacción en Cadena en Tiempo Real de la Polimerasa/instrumentación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/instrumentación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2 , Sensibilidad y Especificidad
4.
Virol J ; 9: 209, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22988938

RESUMEN

BACKGROUND: The polyomaviruses WUPyV and KIPyV have been detected in various sample types including feces indicating pathogenicity in the gastrointestinal (GI) system. However, quantitative viral load data from other simultaneously collected sample types are missing. As a consequence, primary replication in the GI system cannot be differentiated from swallowed virus from the respiratory tract. Here we present a retrospective quantitative longitudinal analysis in simultaneously harvested specimens from different organ sites of patients undergoing hematopoietic stem cell transplantation (HSCT). This allows the definition of sample types where deoxyribonucleic acid (DNA) detection can be expected and, as a consequence, the identification of their primary replication site. FINDINGS: Viral DNA loads from 37 patients undergoing HSCT were quantified in respiratory tract secretions (RTS), stool and urine samples as well as in leukocytes (n = 449). Leukocyte-associated virus could not be found. WUPyV was found in feces, RTS and urine samples of an infant, while KIPyV was repeatedly detected in RTS and stool samples of 4 adult patients.RTS and stool samples were matched to determine the viral load difference showing a mean difference of 2.3 log copies/ml (p < 0.001). CONCLUSIONS: The data collected in this study suggest that virus detection in the GI tract results from swallowed virus from the respiratory tract (RT). We conclude that shedding from the RT should be ruled out before viral DNA detection in the feces can be correlated to GI symptoms.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/efectos adversos , Infecciones por Polyomavirus/virología , Poliomavirus/clasificación , Poliomavirus/aislamiento & purificación , Adulto , Heces/virología , Femenino , Enfermedades Gastrointestinales/virología , Humanos , Lactante , Estudios Longitudinales , Masculino , Infecciones del Sistema Respiratorio/virología , Estudios Retrospectivos , Esputo/virología , Orina/virología
5.
Nat Med ; 28(3): 496-503, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090165

RESUMEN

Infection-neutralizing antibody responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 vaccination are an essential component of antiviral immunity. Antibody-mediated protection is challenged by the emergence of SARS-CoV-2 variants of concern (VoCs) with immune escape properties, such as omicron (B.1.1.529), which is rapidly spreading worldwide. Here we report neutralizing antibody dynamics in a longitudinal cohort of coronavirus disease 2019 convalescent and infection-naive individuals vaccinated with mRNA BNT162b2 by quantifying SARS-CoV-2 spike protein antibodies and determining their avidity and neutralization capacity in serum. Using live-virus neutralization assays, we show that a superior infection-neutralizing capacity against all VoCs, including omicron, developed after either two vaccinations in convalescents or a third vaccination or breakthrough infection of twice-vaccinated, naive individuals. These three consecutive spike antigen exposures resulted in an increasing neutralization capacity per anti-spike antibody unit and were paralleled by stepwise increases in antibody avidity. We conclude that an infection-plus-vaccination-induced hybrid immunity or a triple immunization can induce high-quality antibodies with superior neutralization capacity against VoCs, including omicron.


Asunto(s)
Vacuna BNT162 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Humanos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA