Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plants (Basel) ; 10(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34451769

RESUMEN

Manganese (Mn) is an essential element that intervenes in several plant metabolic processes. The olive tree, and its fruits and leaves, are known as a source of nutraceuticals since they are rich in biophenols. However, there is still a serious lack of data about biophenolic distribution in olive stems and roots under Mn fertilisation. In this context, our study aimed to examine the effects of Mn fertilisation on the biophenolic profile in the leaves, stems, and roots of the 'Istarska bjelica' olive cultivar. The experiment was set up in a greenhouse, during a period of five months, as a random block design consisting of three treatments with varying Mn concentrations in full-strength Hoagland's nutrient solution (0.2 µM Mn, 12 µM Mn, and 24 µM Mn). The obtained results indicate that the amount of Mn in the examined olive plant tissues was significantly higher under 12 µM Mn and 24 µM Mn treatments compared to that of the 0.2 µM Mn treatment. While the concentration of biophenols varied in roots depending on the compound in question, a strong positive impact of the increased Mn concentration in nutrient solution (12 µM Mn and 24 µM Mn) on the concentrations of the main biophenolic compounds was observed in stems. The concentration of oleuropein in leaves almost doubled at 24 µM Mn, with the highest Mn concentration, as compared to the 0.2 µM Mn treatment. The obtained results led to the conclusion that the supply of Mn could enhance the concentration of some biologically active compounds in olives grown hydroponically, implying a critical need for further investigation of Mn fertilisation practices in the conventional olive farming system.

2.
Plants (Basel) ; 9(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867040

RESUMEN

In order to investigate the potential of various olive cultivars and leaf sampling times for phytochemical farming practice in Croatia, phenolic and mineral composition was determined in olive leaves of four Croatian cultivars and Italian cultivar Leccino collected at three occasions, in October 2017, January 2018, and March 2018. Istarska bjelica turned out to have the largest phytochemical potential among the investigated cultivars due to steady high oleuropein concentrations found in its leaves. The concentration of main phenolic components in Istarska bjelica leaves changed only slightly during the sampling period, suggesting the possibility of its higher capability for low air temperatures stress resistance and different metabolic response compared to the other studied cultivars. Low air temperatures increased the oleuropein level and antioxidant activity in leaves of Leccino, Oblica, Levantinka, and Drobnica cultivars, which may be of crucial phytochemical farming interest. Each of the investigated olive cultivars was characterized by a specific leaf mineral nutrient composition, which could have had a specific role in their interplay with phenols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA