Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 160(8)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38421071

RESUMEN

The impact of successive replacement of K+ by Na+ on the megahertz-gigahertz polarization response of 0.25[fKSCN + (1 - f)NaSCN] + 0.75CH3CONH2 deep eutectic solvents (DESs) was explored via temperature-dependent (303 ≤ T/K ≤ 343) dielectric relaxation (DR) measurements and computer simulations. Both the DR measurements (0.2 ≤ ν/GHz ≤ 50) and the simulations revealed multi-Debye relaxations accompanied by a decrease in the solution static dielectric constant (ɛs) upon the replacement of K+ by Na+. Accurate measurements of the DR response of DESs below 100 MHz were limited by the well-known one-over-frequency divergence for conducting solutions. This problem was tackled in simulations by removing the zero frequency contributions arising from the ion current to the total simulated DR response. The temperature-dependent measurements revealed a much stronger viscosity decoupling of DR times for Na+-containing DES than for the corresponding K+ system. The differential scanning calorimetry measurements indicated a higher glass transition temperature for Na+-DES (∼220 K) than K+-DES (∼200 K), implying more fragility and cooperativity for the former (Na+-DES) than the latter. The computer simulations revealed a gradual decrease in the average number of H bonds (⟨nHB⟩) per acetamide molecule and increased frustrations in the average orientational order upon the replacement of K+ by Na+. Both the measured and simulated ɛs values were found to decrease linearly with ⟨nHB⟩. Decompositions of the simulated DR spectra revealed that the cation-dependent cross interaction (dipole-ion) term contributes negligibly to ɛs and appears in the terahertz regime. Finally, the simulated collective single-particle reorientational relaxations and the structural H-bond fluctuation dynamics revealed the microscopic origin of the cation identity dependence shown by the measured DR relaxation times.

2.
J Chem Phys ; 158(17)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37139998

RESUMEN

Frequency-dependent dielectric relaxation in three deep eutectic solvents (DESs), (acetamide+LiClO4/NO3/Br), was investigated in the temperature range, 329 ≤ T/K ≤ 358, via molecular dynamics simulations. Subsequently, decomposition of the real and the imaginary components of the simulated dielectric spectra was carried out to separate the rotational (dipole-dipole), translational (ion-ion), and ro-translational (dipole-ion) contributions. The dipolar contribution, as expected, was found to dominate all the frequency-dependent dielectric spectra over the entire frequency regime, while the other two components together made tiny contributions only. The translational (ion-ion) and the cross ro-translational contributions appeared in the THz regime in contrast to the viscosity-dependent dipolar relaxations that dominated the MHz-GHz frequency window. Our simulations predicted, in agreement with experiments, anion-dependent decrement of the static dielectric constant (ɛs ∼ 20 to 30) for acetamide (ɛs ∼ 66) in these ionic DESs. Simulated dipole-correlations (Kirkwood g factor) indicated significant orientational frustrations. The frustrated orientational structure was found to be associated with the anion-dependent damage of the acetamide H-bond network. Single dipole reorientation time distributions suggested slowed down acetamide rotations but did not indicate presence of any "rotationally frozen" molecule. The dielectric decrement is, therefore, largely static in origin. This provides a new insight into the ion dependence of the dielectric behavior of these ionic DESs. A good agreement between the simulated and the experimental timescales was also noticed.

3.
J Phys Chem B ; 128(27): 6567-6580, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38949428

RESUMEN

A combined experimental and simulation study of dielectric relaxation (DR) of a deep eutectic solvent (DES) composed of betaine, urea, and water with the composition [Betaine:Urea:Water = 11.7:12:1 (weight ratio) and 9:18:5 (molar ratio)] was performed to explore and understand the interaction and dynamics of this system. Temperature-dependent (303 ≤ T/K ≤ 343) measurements were performed over 9 decades of frequency, combining three different measurement setups. Measured DR, comprising four distinct steps with relaxation times spreading over a few picoseconds to several nanoseconds, was found to agree well with simulations. The simulated total DR spectra, upon dissection into three self (intraspecies) and three cross (interspecies) interaction contributions, revealed that the betaine-betaine self-term dominated (∼65%) the relaxation, while the urea-urea and water-water interactions contributed only ∼7% and ∼1%, respectively. The cross-terms (betaine-urea, betaine-water, and urea-water) together accounted for <30% of the total DR. The slowest DR component with a time constant of ∼1-10 ns derived dominant contribution from betaine-betaine interactions, where betaine-water and urea-water interactions also contributed. The subnanosecond (0.1-0.6 ns) time scale originated from all interactions except betaine-water interaction. An extensive interaction of water with betaine and urea severely reduced the average number of water-water H-bonds (∼0.7) and heavily decreased the static dielectric constant of water in this DES (εs ∼ 2). Furthermore, simulated first rank collective single particle reorientational relaxations (C1(t)) and the structural H-bond fluctuation dynamics (CHB (t)) exhibited multiexponential kinetics with time scales that corresponded well with those found both in the simulated and measured DR.

4.
J Phys Chem B ; 126(48): 10146-10155, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36414001

RESUMEN

Deep depression of freezing points of ionic amide deep eutectic solvents (DESs) is known to exhibit a significant dependence on the identity of ions present in those systems and the nature of the functional group attached to the host amide. This deep depression of the freezing point is sometimes termed as "supercooling". For (acetamide + electrolyte) DESs, experiments have revealed signatures of ion-dependent spatiotemporal heterogeneity features. The focus of this work is to provide microscopic explanations of these experimentally observed macroscopic system properties in terms of particle jumps and insights about the origin of the cation dependence. For this purpose, extensive molecular dynamics simulations have been performed employing (acetamide + Na/KSCN) deep eutectics as representative ionic systems at 303, 318, 333, and 348 K. The individual translational motions of acetamide and the ions are followed, and their connections to solution heterogeneity are explored. The center-of-mass motion for Na+ has been found to be more anomalous than that for K+. This difference corroborates well with experimental reports on heterogeneous relaxations in these systems. Simulated viscosity coefficients and dynamic heterogeneity features also reflect this difference. Moreover, simulated reorientational relaxations of acetamide molecules in these ionic DESs suggest that a Na+-containing DES is more heterogeneous than the corresponding K+-containing system. Estimated void and neck distributions for acetamide molecules differ as the alkali metal ions differ. In brief, this study provides a detailed microscopic view of the cation dependence of the microheterogeneous relaxation dynamics of these DESs reported repeatedly by different experiments.


Asunto(s)
Amidas , Cationes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA