RESUMEN
We show that SARS-CoV-2 spike protein interacts with both cellular heparan sulfate and angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Docking studies suggest a heparin/heparan sulfate-binding site adjacent to the ACE2-binding site. Both ACE2 and heparin can bind independently to spike protein in vitro, and a ternary complex can be generated using heparin as a scaffold. Electron micrographs of spike protein suggests that heparin enhances the open conformation of the RBD that binds ACE2. On cells, spike protein binding depends on both heparan sulfate and ACE2. Unfractionated heparin, non-anticoagulant heparin, heparin lyases, and lung heparan sulfate potently block spike protein binding and/or infection by pseudotyped virus and authentic SARS-CoV-2 virus. We suggest a model in which viral attachment and infection involves heparan sulfate-dependent enhancement of binding to ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin presents new therapeutic opportunities.
Asunto(s)
Betacoronavirus/fisiología , Heparitina Sulfato/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/aislamiento & purificación , Sitios de Unión , COVID-19 , Línea Celular , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/química , Humanos , Riñón/metabolismo , Pulmón/metabolismo , Simulación de Dinámica Molecular , Pandemias , Peptidil-Dipeptidasa A/química , Neumonía Viral/patología , Neumonía Viral/virología , Unión Proteica , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del VirusRESUMEN
SARS-CoV-2 proteases Mpro and PLpro are promising targets for antiviral drug development. In this study, we present an antiviral screening strategy involving a novel in-cell protease assay, antiviral and biochemical activity assessments, as well as structural determinations for rapid identification of protease inhibitors with low cytotoxicity. We identified eight compounds with anti-SARS-CoV-2 activity from a library of 64 repurposed drugs and modeled at protease active sites by in silico docking. We demonstrate that Sitagliptin and Daclatasvir inhibit PLpro, and MG-101, Lycorine HCl, and Nelfinavir mesylate inhibit Mpro of SARS-CoV-2. The X-ray crystal structure of Mpro in complex with MG-101 shows a covalent bond formation between the inhibitor and the active site Cys145 residue indicating its mechanism of inhibition is by blocking the substrate binding at the active site. Thus, we provide methods for rapid and effective screening and development of inhibitors for blocking virus polyprotein processing as SARS-CoV-2 antivirals. Additionally, we show that the combined inhibition of Mpro and PLpro is more effective in inhibiting SARS-CoV-2 and the delta variant.
Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos/métodos , SARS-CoV-2/enzimología , Inhibidores de Proteasa Viral/análisis , Reposicionamiento de Medicamentos , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Tratamiento Farmacológico de COVID-19RESUMEN
Viruses thrive by exploiting the cells they infect, but in order to replicate and infect other cells they must produce viral proteins. As a result, viruses are also susceptible to exploitation by defective versions of themselves that do not produce such proteins. A defective viral genome with deletions in protein-coding genes could still replicate in cells coinfected with full-length viruses. Such a defective genome could even replicate faster due to its shorter size, interfering with the replication of the virus. We have created a synthetic defective interfering version of SARS-CoV-2, the virus causing the Covid-19 pandemic, assembling parts of the viral genome that do not code for any functional protein but enable the genome to be replicated and packaged. This synthetic defective genome replicates three times faster than SARS-CoV-2 in coinfected cells, and interferes with it, reducing the viral load of infected cells by half in 24 hours. The synthetic genome is transmitted as efficiently as the full-length genome, suggesting the location of the putative packaging signal of SARS-CoV-2. A version of such a synthetic construct could be used as a self-promoting antiviral therapy: by enabling replication of the synthetic genome, the virus would promote its own demise.
RESUMEN
We identify the prolyl-tRNA synthetase (PRS) inhibitor halofuginone 1 , a compound in clinical trials for anti-fibrotic and anti-inflammatory applications 2 , as a potent inhibitor of SARS-CoV-2 infection and replication. The interaction of SARS-CoV-2 spike protein with cell surface heparan sulfate (HS) promotes viral entry 3 . We find that halofuginone reduces HS biosynthesis, thereby reducing spike protein binding, SARS-CoV-2 pseudotyped virus, and authentic SARS-CoV-2 infection. Halofuginone also potently suppresses SARS-CoV-2 replication post-entry and is 1,000-fold more potent than Remdesivir 4 . Inhibition of HS biosynthesis and SARS-CoV-2 infection depends on specific inhibition of PRS, possibly due to translational suppression of proline-rich proteins. We find that pp1a and pp1ab polyproteins of SARS-CoV-2, as well as several HS proteoglycans, are proline-rich, which may make them particularly vulnerable to halofuginone's translational suppression. Halofuginone is orally bioavailable, has been evaluated in a phase I clinical trial in humans and distributes to SARS-CoV-2 target organs, including the lung, making it a near-term clinical trial candidate for the treatment of COVID-19.
RESUMEN
Zika virus (ZIKV) is an emerging mosquito borne flavivirus and a major public health concern causing severe disease. Due to the presence of a lipid membrane and structural heterogeneity, attaining an atomic resolution structure is challenging, but important to understand virus assembly and life cycle mechanisms that offer distinct targets for therapeutic intervention. We here use subvolume refinement to achieve a 3.4 Å resolution structure and identify two distinct lipid moieties. The first arises from the inner leaflet and is coordinated by hydrophobic residues of the M and E transmembrane helices that form a binding pocket not previously characterized. The second lipid arises from the outer leaflet coordinate between two E protein helices. Structure-based mutagenesis identifies critical hydrophobic interactions and their effect on the virus life cycle. Results show that lipids play an essential role in the ZIKV assembly pathway revealing a potential target of lipid based antiviral drug development.
Asunto(s)
Ensamble de Virus/fisiología , Virus Zika/fisiología , Animales , Chlorocebus aethiops , Células HEK293 , Humanos , Células Vero , Virión/ultraestructura , Virus Zika/aislamiento & purificación , Virus Zika/ultraestructuraRESUMEN
Escherichia coli strains present a vast genomic diversity. We report the draft genome sequences of 1,000 isolates from the E. coli Reference Center at Penn State University. These strains were originally isolated from multiple animal and environmental sources over the past 50 years.
RESUMEN
We show that SARS-CoV-2 spike protein interacts with cell surface heparan sulfate and angiotensin converting enzyme 2 (ACE2) through its Receptor Binding Domain. Docking studies suggest a putative heparin/heparan sulfate-binding site adjacent to the domain that binds to ACE2. In vitro, binding of ACE2 and heparin to spike protein ectodomains occurs independently and a ternary complex can be generated using heparin as a template. Contrary to studies with purified components, spike protein binding to heparan sulfate and ACE2 on cells occurs codependently. Unfractionated heparin, non-anticoagulant heparin, treatment with heparin lyases, and purified lung heparan sulfate potently block spike protein binding and infection by spike protein-pseudotyped virus and SARS-CoV-2 virus. These findings support a model for SARS-CoV-2 infection in which viral attachment and infection involves formation of a complex between heparan sulfate and ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin may represent new therapeutic opportunities.