Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 290(29): 17822-17837, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26041779

RESUMEN

Cells respond to shrinkage induced by increased extracellular osmolarity via programmed changes in gene transcription and mRNA translation. The immediate response to this stress includes the induction of expression of the neutral amino acid transporter SNAT2. Increased SNAT2-mediated uptake of neutral amino acids is an essential adaptive mechanism for restoring cell volume. In contrast, stress-induced phosphorylation of the α subunit of the translation initiation factor eIF2 (eIF2α) can promote apoptosis. Here we show that the response to mild hyperosmotic stress involves regulation of the phosphorylation of eIF2α by increased levels of GADD34, a regulatory subunit of protein phosphatase 1 (PP1). The induction of GADD34 was dependent on transcriptional control by the c-Jun-binding cAMP response element in the GADD34 gene promoter and posttranscriptional stabilization of its mRNA. This mechanism differs from the regulation of GADD34 expression by other stresses that involve activating transcription factor 4 (ATF4). ATF4 was not translated during hyperosmotic stress despite an increase in eIF2α phosphorylation. The SNAT2-mediated increase in amino acid uptake was enhanced by increased GADD34 levels in a manner involving decreased eIF2α phosphorylation. It is proposed that the induction of the SNAT2/GADD34 axis enhances cell survival by promoting the immediate adaptive response to stress.


Asunto(s)
Sistema de Transporte de Aminoácidos A/metabolismo , Presión Osmótica , Proteína Fosfatasa 1/metabolismo , Animales , Línea Celular , Supervivencia Celular , Factor 2 Eucariótico de Iniciación/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Ratones , Fosforilación , Regiones Promotoras Genéticas , Proteína Fosfatasa 1/genética
2.
J Biol Chem ; 289(18): 12593-611, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24648524

RESUMEN

The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes stress to which an unfolded protein response is activated to render cell survival or apoptosis (chronic stress). Transcriptional and translational reprogramming is tightly regulated during the unfolded protein response to ensure specific gene expression. The master regulator of this response is the PERK/eIF2α/ATF4 signaling where eIF2α is phosphorylated (eIF2α-P) by the kinase PERK. This signal leads to global translational shutdown, but it also enables translation of the transcription factor ATF4 mRNA. We showed recently that ATF4 induces an anabolic program through the up-regulation of selected amino acid transporters and aminoacyl-tRNA synthetases. Paradoxically, this anabolic program led cells to apoptosis during chronic ER stress in a manner that involved recovery from stress-induced protein synthesis inhibition. By using eIF2α-P-deficient cells as an experimental system, we identified a communicating network of signaling pathways that contribute to the inhibition of protein synthesis during chronic ER stress. This eIF2α-P-independent network includes (i) inhibition of mammalian target of rapamycin kinase protein complex 1 (mTORC1)-targeted protein phosphorylation, (ii) inhibited translation of a selective group of 5'-terminal oligopyrimidine mRNAs (encoding proteins involved in the translation machinery and translationally controlled by mTORC1 signaling), and (iii) inhibited translation of non-5'-terminal oligopyrimidine ribosomal protein mRNAs and ribosomal RNA biogenesis. We propose that the PERK/eIF2α-P/ATF4 signaling acts as a brake in the decline of protein synthesis during chronic ER stress by positively regulating signaling downstream of the mTORC1 activity. These studies advance our knowledge on the complexity of the communicating signaling pathways in controlling protein synthesis rates during chronic stress.


Asunto(s)
Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Fibroblastos/metabolismo , Biosíntesis de Proteínas , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Proteína 5 Relacionada con la Autofagia , Western Blotting , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , ATPasas Transportadoras de Calcio/metabolismo , Células Cultivadas , Embrión de Mamíferos/citología , Factor 2 Eucariótico de Iniciación/genética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosforilación , Polirribosomas/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Tapsigargina/farmacología , Factores de Tiempo , eIF-2 Quinasa/metabolismo
3.
Nature ; 457(7231): 915-9, 2009 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-19098893

RESUMEN

Ligand binding to structural elements in the non-coding regions of messenger RNA modulates gene expression. Ligands such as free metabolites or other small molecules directly bind and induce conformational changes in regulatory RNA elements known as riboswitches. Other types of RNA switches are activated by complexed metabolites-for example, RNA-ligated metabolites such as aminoacyl-charged transfer RNA in the T-box system, or protein-bound metabolites in the glucose- or amino-acid-stimulated terminator-anti-terminator systems. All of these switch types are found in bacteria, fungi and plants. Here we report an RNA switch in human vascular endothelial growth factor-A (VEGFA, also known as VEGF) mRNA 3' untranslated region (UTR) that integrates signals from interferon (IFN)-gamma and hypoxia to regulate VEGFA translation in myeloid cells. Analogous to riboswitches, the VEGFA 3' UTR undergoes a binary conformational change in response to environmental signals. However, the VEGFA 3' UTR switch is metabolite-independent, and the conformational change is dictated by mutually exclusive, stimulus-dependent binding of proteins, namely, the IFN-gamma-activated inhibitor of translation complex and heterogeneous nuclear ribonucleoprotein L (HNRNPL, also known as hnRNP L). We speculate that the VEGFA switch represents the founding member of a family of signal-mediated, protein-dependent RNA switches that evolved to regulate gene expression in multicellular animals in which the precise integration of disparate inputs may be more important than the rapidity of response.


Asunto(s)
Regulación de la Expresión Génica , ARN/metabolismo , Estrés Fisiológico/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Regiones no Traducidas 3' , Aminoacil-ARNt Sintetasas , Silenciador del Gen , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Humanos , Hipoxia/metabolismo , Interferón gamma/metabolismo , Células Mieloides/metabolismo , Células Mieloides/fisiología , ARN/química , Transducción de Señal , Células U937 , Factor A de Crecimiento Endotelial Vascular/genética
4.
J Biol Chem ; 288(24): 17202-13, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23645676

RESUMEN

Endoplasmic reticulum (ER) stress-induced responses are associated with the loss of insulin-producing ß-cells in type 2 diabetes mellitus. ß-Cell survival during ER stress is believed to depend on decreased protein synthesis rates that are mediated via phosphorylation of the translation initiation factor eIF2α. It is reported here that chronic ER stress correlated with increased islet protein synthesis and apoptosis in ß-cells in vivo. Paradoxically, chronic ER stress in ß-cells induced an anabolic transcription program to overcome translational repression by eIF2α phosphorylation. This program included expression of amino acid transporter and aminoacyl-tRNA synthetase genes downstream of the stress-induced ATF4-mediated transcription program. The anabolic response was associated with increased amino acid flux and charging of tRNAs for branched chain and aromatic amino acids (e.g. leucine and tryptophan), the levels of which are early serum indicators of diabetes. We conclude that regulation of amino acid transport in ß-cells during ER stress involves responses leading to increased protein synthesis, which can be protective during acute stress but can lead to apoptosis during chronic stress. These studies suggest that the increased expression of amino acid transporters in islets can serve as early diagnostic biomarkers for the development of diabetes.


Asunto(s)
Aminoácidos/metabolismo , Apoptosis , Diabetes Mellitus Tipo 2/metabolismo , Estrés del Retículo Endoplásmico , Células Secretoras de Insulina/fisiología , Factor de Transcripción Activador 4/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Supervivencia Celular , Diabetes Mellitus Tipo 2/patología , Factor 2 Eucariótico de Iniciación/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , ARN de Transferencia/metabolismo , Activación Transcripcional
5.
J Biol Chem ; 285(22): 17098-111, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20338999

RESUMEN

Regulation of cell volume is of great importance because persistent swelling or shrinkage leads to cell death. Tissues experience hypertonicity in both physiological (kidney medullar cells) and pathological states (hypernatremia). Hypertonicity induces an adaptive gene expression program that leads to cell volume recovery or apoptosis under persistent stress. We show that the commitment to apoptosis is controlled by phosphorylation of the translation initiation factor eIF2alpha, the master regulator of the stress response. Studies with cultured mouse fibroblasts and cortical neurons show that mutants deficient in eIF2alpha phosphorylation are protected from hypertonicity-induced apoptosis. A novel link is revealed between eIF2alpha phosphorylation and the subcellular distribution of the RNA-binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). Stress-induced phosphorylation of eIF2alpha promotes apoptosis by inducing the cytoplasmic accumulation of hnRNP A1, which attenuates internal ribosome entry site-mediated translation of anti-apoptotic mRNAs, including Bcl-xL that was studied here. Hypertonic stress induced the eIF2alpha phosphorylation-independent formation of cytoplasmic stress granules (SGs, structures that harbor translationally arrested mRNAs) and the eIF2alpha phosphorylation-dependent accumulation of hnRNP A1 in SGs. The importance of hnRNP A1 was demonstrated by induction of apoptosis in eIF2alpha phosphorylation-deficient cells that express exogenous cytoplasmic hnRNP A1. We propose that eIF2alpha phosphorylation during hypertonic stress promotes apoptosis by sequestration of specific mRNAs in SGs in a process mediated by the cytoplasmic accumulation of hnRNP A1.


Asunto(s)
Apoptosis , Factor 2 Eucariótico de Iniciación/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ósmosis , Animales , Citoplasma/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1 , Heterocigoto , Ratones , Microscopía Fluorescente/métodos , Modelos Biológicos , Presión Osmótica , Fosforilación , Plásmidos/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal
6.
J Biol Chem ; 284(47): 32312-20, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19720825

RESUMEN

Expression of the arginine/lysine transporter Cat-1 is highly induced in proliferating and stressed cells via mechanisms that include transcriptional activation. A bifunctional INE (intronic element) within the first intron of the Cat-1 gene was identified and characterized in this study. The INE had high sequence homology to an amino acid response element and was shown to act as a transcriptional enhancer in unstressed cells by binding the transcription factor, purine-rich element binding protein A (Pur alpha). During endoplasmic reticulum stress, binding of Pur alpha to the INE decreased; the element acted as a positive regulator in early stress by binding of the transcription factor ATF4 and as a negative regulator in prolonged stress by binding the stress-induced C/EBP family member, CHOP. We conclude that transcriptional control of the Cat-1 gene is tightly controlled by multiple cis-DNA elements, contributing to regulation of cationic amino acid transport for cell growth and proliferation. In addition, we propose that genes may use stress-response elements such as the INE to support basal expression in the absence of stress.


Asunto(s)
Transportador de Aminoácidos Catiónicos 1/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , ADN/química , Retículo Endoplásmico/metabolismo , Elementos de Facilitación Genéticos , Humanos , Intrones , Ratones , Ratas , Factor de Transcripción CHOP/metabolismo
7.
RNA ; 14(3): 593-602, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18230759

RESUMEN

In vitro translation systems are used to investigate translational mechanisms and to synthesize proteins for characterization. Most available mammalian cell-free systems have reduced efficiency due to decreased translation initiation caused by phosphorylation of the initiation factor eIF2alpha on Ser51. We describe here a novel cell-free protein synthesis system using extracts from cultured mouse embryonic fibroblasts that are homozygous for the Ser51 to- Ala mutation in eIF2alpha (A/A cells). The translation efficiency of a capped and polyadenylated firefly luciferase mRNA in A/A cell extracts was 30-fold higher than in wild-type extracts. Protein synthesis in extracts from A/A cells was active for at least 2 h and generated up to 20 microg/mL of luciferase protein. Additionally, the A/A cell-free system faithfully recapitulated the selectivity of in vivo translation for mRNA features; translation was stimulated by a 5'-end cap (m7GpppN) and a 3'-end poly(A) tail in a synergistic manner. The system also showed similar efficiencies of cap-dependent and IRES-mediated translation (EMCV IRES). Significantly, the A/A cell-free system supported the post-translational modification of proteins, as shown by glycosylation of the HIV type-1 gp120 and cleavage of the signal peptide from beta-lactamase. We propose that cell-free systems from A/A cells can be a useful tool for investigating mechanisms of mammalian mRNA translation and for the production of recombinant proteins for molecular studies. In addition, cell-free systems from differentiated cells with the Ser51Ala mutation should provide a means for investigating cell type-specific features of protein synthesis.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Sistema Libre de Células , Factor 2 Eucariótico de Iniciación/genética , Técnicas In Vitro , Ratones , Fosforilación , Plásmidos/genética , Procesamiento Proteico-Postraduccional , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Mol Cell Biol ; 37(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27920257

RESUMEN

High extracellular osmolarity results in a switch from an adaptive to an inflammatory gene expression program. We show that hyperosmotic stress activates the protein kinase R (PKR) independently of its RNA-binding domain. In turn, PKR stimulates nuclear accumulation of nuclear factor κB (NF-κB) p65 species phosphorylated at serine-536, which is paralleled by the induction of a subset of inflammatory NF-κB p65-responsive genes, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and IL-1ß. The PKR-mediated hyperinduction of iNOS decreases cell survival in mouse embryonic fibroblasts via mechanisms involving nitric oxide (NO) synthesis and posttranslational modification of proteins. Moreover, we demonstrate that the PKR inhibitor C16 ameliorates both iNOS amplification and disease-induced phenotypic breakdown of the intestinal epithelial barrier caused by an increase in extracellular osmolarity induced by dextran sodium sulfate (DSS) in vivo Collectively, these findings indicate that PKR activation is an essential part of the molecular switch from adaptation to inflammation in response to hyperosmotic stress.


Asunto(s)
Inflamación/enzimología , Inflamación/patología , Presión Osmótica , eIF-2 Quinasa/metabolismo , Animales , Apoptosis/genética , Colitis/metabolismo , Colitis/patología , Enterocitos/metabolismo , Activación Enzimática , Inflamación/genética , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitrosación , Fenotipo , Fosforilación , ARN Bicatenario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción ReIA/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores
9.
Int J Biochem Cell Biol ; 59: 135-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25541374

RESUMEN

PERK, PKR, HRI and GCN2 are the four mammalian kinases that phosphorylate the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) on Ser51. This phosphorylation event is conserved among many species and attenuates protein synthesis in response to diverse stress conditions. In contrast, Saccharmyces cerevisiae expresses only the GCN2 kinase. It was demonstrated previously in S. cerevisiae that single point mutations in eIF2α's N-terminus severely impaired phosphorylation at Ser51. To assess whether similar recognition patterns are present in mammalian eIF2α, we expressed human eIF2α's with these mutations in mouse embryonic fibroblasts and assessed their phosphorylation under diverse stress conditions. Some of the mutations prevented the stress-induced phosphorylation of eIF2α by all mammalian kinases, thus defining amino acid residues in eIF2α (Gly 30, Leu 50, and Asp 83) that are required for substrate recognition. We also identified residues that were less critical or not required for recognition by the mammalian kinases (Ala 31, Met 44, Lys 79, and Tyr 81), even though they were essential for recognition of the yeast eIF2α by GCN2. We propose that mammalian eIF2α kinases evolved to maximize their interactions with the evolutionarily conserved Ser51 residue of eIF2α in response to diverse stress conditions, thus adding to the complex signaling pathways that mammalian cells have over simpler organisms.


Asunto(s)
Aminoácidos/metabolismo , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HEK293 , Humanos , Soluciones Hipertónicas/farmacología , Ratones , Modelos Moleculares , Proteínas Mutantes/metabolismo , Mutación/genética , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Poli I-C/farmacología , Reproducibilidad de los Resultados , Estrés Fisiológico/efectos de los fármacos , Relación Estructura-Actividad
10.
Elife ; 4: e10067, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26595448

RESUMEN

The sulfhydration of cysteine residues in proteins is an important mechanism involved in diverse biological processes. We have developed a proteomics approach to quantitatively profile the changes of sulfhydrated cysteines in biological systems. Bioinformatics analysis revealed that sulfhydrated cysteines are part of a wide range of biological functions. In pancreatic ß cells exposed to endoplasmic reticulum (ER) stress, elevated H2S promotes the sulfhydration of enzymes in energy metabolism and stimulates glycolytic flux. We propose that transcriptional and translational reprogramming by the integrated stress response (ISR) in pancreatic ß cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism.


Asunto(s)
Cisteína/metabolismo , Regulación de la Expresión Génica , Sulfuro de Hidrógeno/metabolismo , Redes y Vías Metabólicas , Procesamiento Proteico-Postraduccional , Estrés Fisiológico , Animales , Biología Computacional , Ratones Endogámicos C57BL , Proteoma/análisis
11.
Mol Cell Biol ; 32(5): 992-1003, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22215619

RESUMEN

The accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers transcriptional and translational reprogramming. This unfolded protein response (UPR) protects cells during transient stress and can lead to apoptosis during prolonged stress. Two key mediators of the UPR are PKR-like ER kinase (PERK), which phosphorylates the α subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in decreased protein synthesis, and the α subunit of inositol-requiring enzyme 1 (IRE1α), which initiates cytoplasmic splicing of the mRNA encoding the transcription factor X-box binding protein 1 (XBP1). XBP1 induces transcription of genes involved in protein quality control. This report describes cross talk between these two pathways: phosphorylation of eIF2α was required for maximal induction of spliced XBP1 (XBP1s) protein levels via a mechanism that involved stabilization of XBP1s mRNA. By using mouse embryo fibroblasts deficient in UPR signaling pathways, we demonstrate that stress-induced stabilization of XBP1s mRNA requires cytoplasmic splicing of the mRNA and inhibition of its translation. Because the XBP1s protein promotes transcription of its own gene, the UPR-induced mRNA stabilization is part of a positive feedback loop that induces XBP1s protein accumulation and transcription of target genes during stress. We propose a model in which eIF2α phosphorylation-mediated control of mRNA turnover is a molecular switch that regulates the stress response transcription program and the ER's capacity for protein folding during stress.


Asunto(s)
Proteínas de Unión al ADN/genética , Estrés del Retículo Endoplásmico/genética , Biosíntesis de Proteínas , Empalme del ARN , Factores de Transcripción/genética , Respuesta de Proteína Desplegada , Animales , Línea Celular , Proteínas de Unión al ADN/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Ratones , Modelos Moleculares , Fosforilación , Pliegue de Proteína , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción del Factor Regulador X , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética , Proteína 1 de Unión a la X-Box
12.
Cell Cycle ; 10(16): 2691-702, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21768774

RESUMEN

Protein synthesis across kingdoms involves the assembly of 70S (prokaryotes) or 80S (eukaryotes) ribosomes on the mRNAs to be translated. 70S ribosomes are protected from degradation in bacteria during stationary growth or stress conditions by forming dimers that migrate in polysome profiles as 100S complexes. Formation of ribosome dimers in Escherichia coli is mediated by proteins, namely the ribosome modulation factor (RMF), which is induced in the stationary phase of cell growth. It is reported here a similar ribosomal complex of 110S in eukaryotic cells, which forms during nutrient starvation. The dynamic nature of the 110S ribosomal complex (mammalian equivalent of the bacterial 100S) was supported by the rapid conversion into polysomes upon nutrient-refeeding via a mechanism sensitive to inhibitors of translation initiation. Several experiments were used to show that the 110S complex is a dimer of nontranslating ribosomes. Cryo-electron microscopy visualization of the 110S complex revealed that two 80S ribosomes are connected by a flexible, albeit localized, interaction. We conclude that, similarly to bacteria, rat cells contain stress-induced ribosomal dimers. The identification of ribosomal dimers in rat cells will bring new insights in our thinking of the ribosome structure and its function during the cellular response to stress conditions.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Animales , Sitios de Unión , Línea Celular , Cricetinae , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Ratones , Biosíntesis de Proteínas , Multimerización de Proteína , Ratas , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/ultraestructura , Ribosomas/genética , Ribosomas/ultraestructura , Estrés Fisiológico
13.
Mol Biol Cell ; 21(18): 3220-31, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20660158

RESUMEN

Various forms of stress induce pathways that converge on the phosphorylation of the alpha (α) subunit of eukaryotic translation initiation factor eIF2 at serine 51 (S51), a modification that results in a global inhibition of protein synthesis. In many cases eIF2α phosphorylation is a biological response that facilitates cells to cope with stressful environments. Glucose deficiency, an important form of stress, is associated with an induction of apoptosis. Herein, we demonstrate that eIF2α phosphorylation is a key step in maintaining a balance between the life and death of a glucose-deficient cell. That is, eIF2α phosphorylation acts as a molecular switch that shifts cells from a proapoptotic to a cytoprotective state in response to prolonged glucose deficiency. This adaptation process is associated with the timely expression of proteins and activation of pathways with significant contributions to cell survival and adaptation including the X-linked inhibitor of apoptosis protein (XIAP). We also show that among the eIF2α kinases GCN2 plays a proapoptotic role whereas PERK and PKR play a cytoprotective one in response to glucose deficiency. Our data demonstrate that eIF2α phosphorylation is a significant determinant of survival and adaptation of glucose-deficient cells with possible important implications in biological processes that interfere with glucose metabolism.


Asunto(s)
Adaptación Biológica , Supervivencia Celular/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Glucosa/deficiencia , Serina/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Factor 2 Eucariótico de Iniciación/genética , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Ratones , Fosforilación , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
14.
Mol Cell Biol ; 29(10): 2899-912, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19273590

RESUMEN

The response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5' untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation. Association of both proteins with Cat-1 mRNA increased during starvation with kinetics that paralleled that of IRES activation, although the levels and subcellular distribution of the proteins were unchanged. The sequence CUUUCU within the Cat-1 IRES was important for PTB binding and for the induction of translation during amino acid starvation. Binding of hnRNP L to the IRES or the Cat-1 mRNA in vivo was independent of PTB binding but was not sufficient to increase IRES activity or Cat-1 mRNA translation during amino acid starvation. In contrast, binding of PTB to the Cat-1 mRNA in vivo required hnRNP L. A wider role of hnRNP L in mRNA translation was suggested by the decrease of global protein synthesis in cells with reduced hnRNP L levels. It is proposed that PTB and hnRNP L are positive regulators of Cat-1 mRNA translation via the IRES under stress conditions that cause a global decrease of protein synthesis.


Asunto(s)
Aminoácidos/metabolismo , Transportador de Aminoácidos Catiónicos 1/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 5' , Animales , Transportador de Aminoácidos Catiónicos 1/genética , Línea Celular , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo L/genética , Ratones , Conformación de Ácido Nucleico , Proteína de Unión al Tracto de Polipirimidina/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo
15.
J Biol Chem ; 283(33): 22443-56, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18550528

RESUMEN

The accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers a stress response program that protects cells early in the response and can lead to apoptosis during prolonged stress. The basic leucine zipper transcription factor, CCAAT/enhancer-binding protein beta (C/EBPbeta), is one of the genes with increased expression during ER stress. Translation of the C/EBPbeta mRNA from different initiation codons leads to the synthesis of two transcriptional activators (LAP-1 and -2) and a transcriptional repressor (LIP). The LIP/LAP ratio is a critical factor in C/EBPbeta-mediated gene transcription. It is shown here that the LIP/LAP ratio decreased by 5-fold during the early phase of ER stress and increased by 20-fold during the late phase, mostly because of changes in LIP levels. The early decrease in LIP required degradation via the proteasome pathway and phosphorylation of the translation initiation factor, eIF2alpha. The increased LIP levels during the late phase were due to increased synthesis and increased stability of the protein. It is proposed that regulation of synthesis and degradation rates during ER stress controls the LIP/LAP ratio. The importance of C/EBPbeta in the ER-stress response program was demonstrated using C/EBPbeta-deficient mouse embryonic fibroblasts. It is shown that C/EBPbeta attenuates expression of pro-survival ATF4 target genes in late ER stress and enhances expression of cell death-associated genes downstream of CHOP. The inhibitory effect of LIP on ATF4-induced transcription was demonstrated for the cat-1 amino acid transporter gene. We conclude that regulation of LIP/LAP ratios during ER stress is a novel mechanism for modulating the cellular stress response.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/fisiología , Retículo Endoplásmico/fisiología , Hígado/fisiología , Transcripción Genética , Animales , Proteína beta Potenciadora de Unión a CCAAT/deficiencia , Proteína beta Potenciadora de Unión a CCAAT/genética , Línea Celular Tumoral , Genes Reporteros , Glioma/genética , Luciferasas/genética , Plásmidos , ARN Neoplásico/genética , ARN Neoplásico/aislamiento & purificación , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA