Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6441-6458, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38499483

RESUMEN

Coronaviruses modify their single-stranded RNA genome with a methylated cap during replication to mimic the eukaryotic mRNAs. The capping process is initiated by several nonstructural proteins (nsp) encoded in the viral genome. The methylation is performed by two methyltransferases, nsp14 and nsp16, while nsp10 acts as a co-factor to both. Additionally, nsp14 carries an exonuclease domain which operates in the proofreading system during RNA replication of the viral genome. Both nsp14 and nsp16 were reported to independently bind nsp10, but the available structural information suggests that the concomitant interaction between these three proteins would be impossible due to steric clashes. Here, we show that nsp14, nsp10, and nsp16 can form a heterotrimer complex upon significant allosteric change. This interaction is expected to encourage the formation of mature capped viral mRNA, modulating nsp14's exonuclease activity, and protecting the viral RNA. Our findings show that nsp14 is amenable to allosteric regulation and may serve as a novel target for therapeutic approaches.


Asunto(s)
Metiltransferasas , ARN Viral , SARS-CoV-2 , Proteínas no Estructurales Virales , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/química , Metiltransferasas/metabolismo , Metiltransferasas/genética , Metiltransferasas/química , Metilación , ARN Viral/metabolismo , ARN Viral/química , ARN Viral/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Humanos , Unión Proteica , Caperuzas de ARN/metabolismo , Caperuzas de ARN/genética , Regulación Alostérica , COVID-19/virología , COVID-19/genética , Multimerización de Proteína , Replicación Viral/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN Mensajero/química , Proteínas Reguladoras y Accesorias Virales
2.
Microbes Infect ; 26(5-6): 105365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38777105

RESUMEN

Aureocin A53 is a peptide bacteriocin produced by an opportunistic pathogen Staphylococcus aureus strain A53. The spatial structure of aureocin, unlike its amino acid sequence, is similar to the bacteriocin BacSp222, which was recently found to have the ability to induce the inflammatory response in the host cells. The presented research aimed to verify such properties also for aureocin A53. We demonstrated that the synthetic aureocin has slight cytotoxic activity towards murine monocytic-macrophage cells. This molecule was also able to activate murine P388.D1 and RAW 264.7 cells to IFN-γ-dependent production of nitric oxide and to activate production of the pro-inflammatory cytokine - TNF. We also proved that the observed pro-inflammatory activity of the studied bacteriocin is related to the stimulation of the TLR2/TLR6 heterodimer and, consequently, activation of the NF-κB transcription factor. To sum up, A53 is the second bacteriocin described in the literature, showing the pro-inflammatory activity against murine macrophage-like cells.


Asunto(s)
Bacteriocinas , Macrófagos , Óxido Nítrico , Staphylococcus aureus , Ratones , Animales , Bacteriocinas/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Staphylococcus aureus/efectos de los fármacos , Células RAW 264.7 , Óxido Nítrico/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Línea Celular , Citocinas/metabolismo , Interferón gamma/metabolismo , Inflamación/metabolismo
3.
Front Immunol ; 15: 1358247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469316

RESUMEN

Galleria mellonella larvae repeatedly infected with Pseudomonas entomophila bacteria re-induced their immune response. Its parameters, i.e. the defence activities of cell-free hemolymph, the presence and activity of antimicrobial peptides, and the expression of immune-relevant genes were modulated after the re-challenge in comparison to non-primed infected larvae, resulting in better protection. No enhanced resistance was observed when the larvae were initially infected with other microorganisms, and larvae pre-infected with P. entomophila were not more resistant to further infection with other pathogens. Then, the peptide profiles of hemolymph from primed- and non-primed larvae infected with P. entomophila were compared by quantitative RP-HPLC (Reverse Phase - High Performance Liquid Chromatography). The level of carbonic anhydrase, anionic peptide-1, proline peptide-2, and finally, unknown so far, putative Kazal peptide Pr13a was higher in the primed infected animals than in the larvae infected with P. entomophila for the first time. The expression of the Pr13a gene increased two-fold after the infection, but only in the primed animals. To check whether the enhanced level of Pr13a could have physiological significance, the peptide was purified to homogeneity and checked for its defence properties. In fact, it had antibacterial activity: at the concentration of 15 µM and 7.5 µM it reduced the number of P. entomophila and Bacillus thuringiensis CFU, respectively, to about 40%. The antibacterial activity of Pr13a was correlated with changes observed on the surface of the peptide-treated bacteria, e.g. surface roughness and adhesion force. The presented results bring us closer to finding hemolymph constituents responsible for the effect of priming on the immune response in re-infected insects.


Asunto(s)
Mariposas Nocturnas , Pseudomonas , Animales , Larva , Péptidos/farmacología , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA