Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Plant Cell ; 28(8): 1894-909, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27385818

RESUMEN

Chromosome condensation, a process mediated by the condensin complex, is essential for proper chromosome segregation during cell division. Unlike rapid mitotic chromosome condensation, meiotic chromosome condensation occurs over a relatively long prophase I and is unusually complex due to the coordination with chromosome axis formation and homolog interaction. The molecular mechanisms that regulate meiotic chromosome condensation progression from prophase I to metaphase I are unclear. Here, we show that the Arabidopsis thaliana meiotic PHD-finger protein MMD1/DUET is required for progressive compaction of prophase I chromosomes to metaphase I bivalents. The MMD1 PHD domain is required for its function in chromosome condensation and binds to methylated histone tails. Transcriptome analysis and qRT-PCR showed that several condensin genes exhibit significantly reduced expression in mmd1 meiocytes. Furthermore, MMD1 specifically binds to the promoter region of the condensin subunit gene CAP-D3 to enhance its expression. Moreover, cap-d3 mutants exhibit similar chromosome condensation defects, revealing an MMD1-dependent mechanism for regulating meiotic chromosome condensation, which functions in part by promoting condensin gene expression. Together, these discoveries provide strong evidence that the histone reader MMD1/DUET defines an important step for regulating the progression of meiotic prophase I chromosome condensation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cromosomas de las Plantas/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Proteínas de Unión al ADN/genética , Mitosis/genética , Mitosis/fisiología , Factores de Transcripción/genética
2.
Plant Cell ; 28(2): 521-36, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26813623

RESUMEN

Sister chromatid cohesion, which is mediated by the cohesin complex, is essential for the proper segregation of chromosomes during mitosis and meiosis. Stable binding of cohesin with chromosomes is regulated in part by the opposing actions of CTF7 (CHROMOSOME TRANSMISSION FIDELITY7) and WAPL (WINGS APART-LIKE). In this study, we characterized the interaction between Arabidopsis thaliana CTF7 and WAPL by conducting a detailed analysis of wapl1-1 wapl2 ctf7 plants. ctf7 plants exhibit major defects in vegetative growth and development and are completely sterile. Inactivation of WAPL restores normal growth, mitosis, and some fertility to ctf7 plants. This shows that the CTF7/WAPL cohesin system is not essential for mitosis in vegetative cells and suggests that plants may contain a second mechanism to regulate mitotic cohesin. WAPL inactivation restores cohesin binding and suppresses ctf7-associated meiotic cohesion defects, demonstrating that WAPL and CTF7 function as antagonists to regulate meiotic sister chromatid cohesion. The ctf7 mutation only had a minor effect on wapl-associated defects in chromosome condensation and centromere association. These results demonstrate that WAPL has additional roles that are independent of its role in regulating chromatin-bound cohesin.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Acetiltransferasas/genética , Arabidopsis/fisiología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Centrómero/genética , Centrómero/fisiología , Centrómero/ultraestructura , Cromatina/genética , Segregación Cromosómica , Meiosis , Mitosis , Mutación , Cohesinas
3.
PLoS Genet ; 10(7): e1004497, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25033056

RESUMEN

Sister chromatid cohesion, which is mediated by the cohesin complex, is essential for the proper segregation of chromosomes in mitosis and meiosis. The establishment of stable sister chromatid cohesion occurs during DNA replication and involves acetylation of the complex by the acetyltransferase CTF7. In higher eukaryotes, the majority of cohesin complexes are removed from chromosomes during prophase. Studies in fly and human have shown that this process involves the WAPL mediated opening of the cohesin ring at the junction between the SMC3 ATPase domain and the N-terminal domain of cohesin's α-kleisin subunit. We report here the isolation and detailed characterization of WAPL in Arabidopsis thaliana. We show that Arabidopsis contains two WAPL genes, which share overlapping functions. Plants in which both WAPL genes contain T-DNA insertions show relatively normal growth and development but exhibit a significant reduction in male and female fertility. The removal of cohesin from chromosomes during meiotic prophase is blocked in Atwapl mutants resulting in chromosome bridges, broken chromosomes and uneven chromosome segregation. In contrast, while subtle mitotic alterations are observed in some somatic cells, cohesin complexes appear to be removed normally. Finally, we show that mutations in AtWAPL suppress the lethality associated with inactivation of AtCTF7. Taken together our results demonstrate that WAPL plays a critical role in meiosis and raises the possibility that mechanisms involved in the prophase removal of cohesin may vary between mitosis and meiosis in plants.


Asunto(s)
Acetiltransferasas/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Profase/genética , Acetiltransferasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular , Cromosomas/metabolismo , Replicación del ADN/genética , Humanos , Meiosis/genética , Mitosis/genética , Intercambio de Cromátides Hermanas/genética , Cohesinas
4.
BMC Plant Biol ; 15: 74, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25848842

RESUMEN

BACKGROUND: Eco1/Ctf7 is essential for the establishment of sister chromatid cohesion during S phase of the cell cycle. Inactivation of Ctf7/Eco1 leads to a lethal phenotype in most organisms. Altering Eco1/Ctf7 levels or point mutations in the gene can lead to alterations in nuclear division as well as a wide range of developmental defects. Inactivation of Arabidopsis CTF7 (AtCTF7) results in severe defects in reproduction and vegetative growth. RESULTS: To further investigate the function(s) of AtCTF7, a tagged version of AtCTF7 and several AtCTF7 deletion constructs were created and transformed into wild type or ctf7 +/- plants. Transgenic plants expressing 35S:NTAP:AtCTF7∆299-345 (AtCTF7∆B) displayed a wide range of phenotypic alterations in reproduction and vegetative growth. Male meiocytes exhibited chromosome fragmentation and uneven chromosome segregation. Mutant ovules contained abnormal megasporocyte-like cells during pre-meiosis, megaspores experienced elongated meiosis and megagametogenesis, and defective megaspores/embryo sacs were produced at various stages. The transgenic plants also exhibited a broad range of vegetative defects, including meristem disruption and dwarfism that were inherited in a non-Mendelian fashion. Transcripts for epigenetically regulated transposable elements (TEs) were elevated in transgenic plants. Transgenic plants expressing 35S:AtCTF7∆B displayed similar vegetative defects, suggesting the defects in 35S:NTAP:AtCTF7∆B plants are caused by high-level expression of AtCTF7∆B. CONCLUSIONS: High level expression of AtCTF7∆B disrupts megasporogenesis, megagametogenesis and male meiosis, as well as causing a broad range of vegetative defects, including dwarfism that are inherited in a non-Mendelian fashion.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Pleiotropía Genética , Proteínas Mutantes/metabolismo , Arabidopsis/citología , Segregación Cromosómica , Elementos Transponibles de ADN/genética , Fertilidad , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Patrón de Herencia/genética , Meiosis , Fenotipo , Plantas Modificadas Genéticamente , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción , Semillas/genética , Semillas/metabolismo
5.
Plant J ; 75(6): 927-40, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23750584

RESUMEN

The proper transmission of DNA in dividing cells is crucial for the survival of eukaryotic organisms. During cell division, faithful segregation of replicated chromosomes requires their tight attachment, known as sister chromatid cohesion, until anaphase. Sister chromatid cohesion is established during S-phase in a process requiring an acetyltransferase that in yeast is known as Establishment of cohesion 1 (Eco1). Inactivation of Eco1 typically disrupts chromosome segregation and homologous recombination-dependent DNA repair in dividing cells, ultimately resulting in lethality. We report here the isolation and detailed characterization of two homozygous T-DNA insertion mutants for the Arabidopsis thaliana Eco1 homolog, CHROMOSOME TRANSMISSION FIDELITY 7/ESTABLISHMENT OF COHESION 1 (CTF7/ECO1), called ctf7-1 and ctf7-2. Mutants exhibited dwarfism, poor anther development and sterility. Analysis of somatic tissues by flow cytometry, scanning electron microscopy and quantitative real-time PCR identified defects in DNA repair and cell division, including an increase in the area of leaf epidermal cells, an increase in DNA content and the upregulation of genes involved in DNA repair including BRCA1 and PARP2. No significant change was observed in the expression of genes that influence entry into the endocycle. Analysis of meiocytes identified changes in chromosome morphology and defective segregation; the abundance of chromosomal-bound cohesion subunits was also reduced. Transcript levels for several meiotic genes, including the recombinase genes DMC1 and RAD51C and the S-phase licensing factor CDC45 were elevated in mutant anthers. Taken together our results demonstrate that Arabidopsis CTF7/ECO1 plays important roles in the preservation of genome integrity and meiosis.


Asunto(s)
Acetiltransferasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cromátides/fisiología , Genoma de Planta , Meiosis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Reparación del ADN/genética , Meiosis/genética , Mitosis/genética , Mutagénesis Insercional , Polen/genética , Polen/crecimiento & desarrollo , Cohesinas
6.
Plant J ; 71(1): 147-60, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22381039

RESUMEN

α-Kleisins are core components of meiotic and mitotic cohesin complexes. Arabidopsis contains four genes that encode α-kleisin proteins: SYN1, SYN2, SYN3 and SYN4. SYN1, a REC8 ortholog, is essential for meiosis, while SYN2 and SYN4 appear to be SCC1 orthologs and function in mitosis. SYN3 is essential for megagametogenesis and is enriched in the nucleolus of meiotic and mitotic cells. In this study the role of SYN3 during meiosis was investigated by characterization of plants that express SYN3-RNAi constructs from either meiotic DMC1, native SYN3, or inducible PX7 promoters. Reduction of SYN3 caused defects in homologous chromosome synapsis and synaptonemal complex (SC) formation during male and female meiosis. Consistent with this observation, relatively little signal for the SC component ZYP1 was detected on the chromosomes of SYN3-RNAi plants. ZYP1 transcript levels were relatively normal, but several transcripts for genes that encode proteins involved in meiotic recombination were altered, which suggested that a reduction in SYN3 may inhibit meiotic progression by alteration of meiotic gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Emparejamiento Cromosómico , Meiosis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Células Germinativas de las Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN
7.
Plant Physiol ; 160(1): 226-36, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22786886

RESUMEN

Mutations in human (Homo sapiens) ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) result in the complex metabolic disease ethylmalonic encephalopathy, which is characterized in part by brain lesions, lactic acidemia, excretion of ethylmalonic acid, and ultimately death. ETHE1-like genes are found in a wide range of organisms; however, the biochemical and physiological role(s) of ETHE1 have not been examined outside the context of ethylmalonic encephalopathy. In this study we characterized Arabidopsis (Arabidopsis thaliana) ETHE1 and determined the effect of an ETHE1 loss-of-function mutation to investigate the role(s) of ETHE1 in plants. Arabidopsis ETHE1 is localized in the mitochondrion and exhibits sulfur dioxygenase activity. Seeds homozygous for a DNA insertion in ETHE1 exhibit alterations in endosperm development that are accompanied by a delay in embryo development followed by embryo arrest by early heart stage. Strong ETHE1 labeling was observed in the peripheral and chalazal endosperm of wild-type seeds prior to cellularization. Therefore, ETHE1 appears to play an essential role in regulating sulfide levels in seeds.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Dioxigenasas/metabolismo , Endospermo/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Secuencia de Aminoácidos , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citoplasma/genética , Citoplasma/metabolismo , Dioxigenasas/genética , Endospermo/enzimología , Endospermo/ultraestructura , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Inmunohistoquímica , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mitocondrias/enzimología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Mutación , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Semillas/enzimología , Semillas/ultraestructura
8.
Plant Physiol ; 154(2): 820-32, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20671110

RESUMEN

CTF7 is an essential gene in yeast that is required for the formation of sister chromatid cohesion. While recent studies have provided insights into how sister chromatid cohesion is established, less is known about how specifically CTF7 facilitates the formation of cohesion, and essentially nothing is known about how sister chromatid cohesion is established in plants. In this report, we describe the isolation and characterization of CTF7 from Arabidopsis (Arabidopsis thaliana). Arabidopsis CTF7 is similar to Saccharomyces cerevisiae CTF7 in that it lacks an amino-terminal extension, exhibits acetyltransferase activity, and can complement a yeast ctf7 temperature-sensitive mutation. CTF7 transcripts are found throughout the plant, with the highest levels present in buds. Seeds containing T-DNA insertions in CTF7 exhibit mitotic defects in the zygote. Interestingly, the endosperm developed normally in ctf7 seeds, suggesting that CTF7 is not essential for mitosis in endosperm nuclei. Minor defects were observed in female gametophytes of ctf7(+/-) plants, and plants that overexpress CTF7 exhibited female gametophyte lethality. Pollen development appeared normal in both CTF7 knockout and overexpression plants. Therefore, proper levels of CTF7 are critical for female gametophyte and embryo development but not for the establishment of mitotic cohesion during microgametogenesis or during endosperm development.


Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Endospermo/crecimiento & desarrollo , Óvulo Vegetal/embriología , Acetiltransferasas/genética , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN Bacteriano/genética , ADN de Plantas/genética , Endospermo/genética , Técnicas de Inactivación de Genes , Genes Esenciales , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Óvulo Vegetal/genética , Polen/genética , Polen/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Biochemistry ; 49(37): 8228-36, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20715794

RESUMEN

Arabidopsis thaliana glyoxalase 2-1 (GLX2-1) exhibits extensive sequence similarity with GLX2 enzymes but is catalytically inactive with SLG, the GLX2 substrate. In an effort to identify residues essential for GLX2 activity, amino acid residues were altered at positions 219, 246, 248, 325, and 328 in GLX2-1 to be the same as those in catalytically active human GLX2. The resulting enzymes were overexpressed, purified, and characterized using metal analyses, fluorescence spectroscopy, and steady-state kinetics to evaluate how these residues affect metal binding, structure, and catalysis. The R246H/N248Y double mutant exhibited low level S-lactoylglutathione hydrolase activity, while the R246H/N248Y/Q325R/R328K mutant exhibited a 1.5-2-fold increase in k(cat) and a decrease in K(m) as compared to the values exhibited by the double mutant. In contrast, the R246H mutant of GLX2-1 did not exhibit glyoxalase 2 activity. Zn(II)-loaded R246H GLX2-1 enzyme bound 2 equiv of Zn(II), and (1)H NMR spectra of the Co(II)-substituted analogue of this enzyme strongly suggest that the introduced histidine binds to Co(II). EPR studies indicate the presence of significant amounts a dinuclear metal ion-containing center. Therefore, an active GLX2 enzyme requires both the presence of a properly positioned metal center and significant nonmetal, enzyme-substrate contacts, with tyrosine 255 being particularly important.


Asunto(s)
Lactoilglutatión Liasa/metabolismo , Metales/química , Arabidopsis/enzimología , Arabidopsis/metabolismo , Catálisis , Glutatión/análogos & derivados , Histidina , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Metales/análisis , Especificidad por Sustrato , Tioléster Hidrolasas
10.
J Biol Inorg Chem ; 15(2): 249-58, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19834746

RESUMEN

In an effort to better understand the structure, metal content, the nature of the metal centers, and enzyme activity of Arabidopsis thaliana Glx2-2, the enzyme was overexpressed, purified, and characterized using metal analyses, kinetics, and UV-vis, EPR, and (1)H NMR spectroscopies. Glx2-2-containing fractions that were purple, yellow, or colorless were separated during purification, and the differently colored fractions were found to contain different amounts of Fe and Zn(II). Spectroscopic analyses of the discrete fractions provided evidence for Fe(II), Fe(III), Fe(III)-Zn(II), and antiferromagnetically coupled Fe(II)-Fe(III) centers distributed among the discrete Glx2-2-containing fractions. The individual steady-state kinetic constants varied among the fractionated species, depending on the number and type of metal ion present. Intriguingly, however, the catalytic efficiency constant, k(cat)/K(m), was invariant among the fractions. The value of k(cat)/K(m) governs the catalytic rate at low, physiological substrate concentrations. We suggest that the independence of k(cat)/K(m) on the precise makeup of the active-site metal center is evolutionarily related to the lack of selectivity for either Fe versus Zn(II) or Fe(II) versus Fe(III), in one or more metal binding sites.


Asunto(s)
Biocatálisis , Hierro/química , Compuestos Organometálicos/química , Tioléster Hidrolasas/metabolismo , Zinc/química , Cinética , Compuestos Organometálicos/metabolismo , Tioléster Hidrolasas/química , Tioléster Hidrolasas/aislamiento & purificación
11.
Biochem J ; 417(1): 323-30, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18782082

RESUMEN

In an effort to probe the structure and function of a predicted mitochondrial glyoxalase 2, GLX2-1, from Arabidopsis thaliana, GLX2-1 was cloned, overexpressed, purified and characterized using metal analyses, kinetics, and UV-visible, EPR, and (1)H-NMR spectroscopies. The purified enzyme was purple and contained substoichiometric amounts of iron and zinc; however, metal-binding studies reveal that GLX2-1 can bind nearly two equivalents of either iron or zinc and that the most stable analogue of GLX2-1 is the iron-containing form. UV-visible spectra of the purified enzyme suggest the presence of Fe(II) in the protein, but the Fe(II) can be oxidized over time or by the addition of metal ions to the protein. EPR spectra revealed the presence of an anti-ferromagnetically-coupled Fe(III)Fe(II) centre and the presence of a protein-bound high-spin Fe(III) centre, perhaps as part of a FeZn centre. No paramagnetically shifted peaks were observed in (1)H-NMR spectra of the GLX2-1 analogues, suggesting low amounts of the paramagnetic, anti-ferromagnetically coupled centre. Steady-state kinetic studies with several thiolester substrates indicate that GLX2-1 is not a GLX2. In contrast with all of the other GLX2 proteins characterized, GLX2-1 contains an arginine in place of one of the metal-binding histidine residues at position 246. In order to evaluate further whether Arg(246) binds metal, the R246L mutant was prepared. The metal binding results are very similar to those of native GLX2-1, suggesting that a different amino acid is recruited as a metal-binding ligand. These results demonstrate that Arabidopsis GLX2-1 is a novel member of the metallo-beta-lactamase superfamily.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Lactoilglutatión Liasa/metabolismo , Metales/metabolismo , Tioléster Hidrolasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión/genética , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Lactoilglutatión Liasa/química , Lactoilglutatión Liasa/genética , Espectroscopía de Resonancia Magnética , Metales/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta , Especificidad por Sustrato , Tioléster Hidrolasas/química , Tioléster Hidrolasas/genética , beta-Lactamasas/química , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
12.
Biochemistry ; 48(23): 5426-34, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19413286

RESUMEN

Human glyoxalase II (Glx2) was overexpressed in rich medium and in minimal medium containing zinc, iron, or cobalt, and the resulting Glx2 analogues were characterized using metal analyses, steady-state and pre-steady-state kinetics, and NMR and EPR spectroscopies to determine the nature of the metal center in the enzyme. Recombinant human Glx2 tightly binds nearly 1 equiv each of Zn(II) and Fe. In contrast to previous reports, this study demonstrates that an analogue containing 2 equiv of Zn(II) cannot be prepared. EPR studies suggest that most of the iron in recombinant Glx2 is Fe(II). NMR studies show that Fe(II) binds to the consensus Zn(2) site in Glx2 and that this site can also bind Co(II) and Ni(II), suggesting that Zn(II) binds to the consensus Zn(1) site. The NMR studies also reveal the presence of a dinuclear Co(II) center in Co(II)-substituted Glx2. Steady-state and pre-steady-state kinetic studies show that Glx2 containing only 1 equiv of Zn(II) is catalytically active and that the metal ion in the consensus Zn(2) site has little effect on catalytic activity. Taken together, these studies suggest that Glx2 contains a Fe(II)Zn(II) center in vivo but that the catalytic activity is due to Zn(II) in the Zn(1) site.


Asunto(s)
Tioléster Hidrolasas/química , Zinc/química , Sitios de Unión , Dominio Catalítico , Cobalto/química , Cobalto/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Hierro/química , Hierro/metabolismo , Cinética , Modelos Biológicos , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tioléster Hidrolasas/metabolismo , Zinc/metabolismo
13.
Biochemistry ; 48(36): 8491-3, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19735113

RESUMEN

In an effort to determine the physiological role of Arabidopsis thaliana Glx2-1, we attempted to uncover a substrate for the enzyme. Glx2-1 did not effectively process 192 diverse substrates found in a commercial screen used for microorganism identification or exhibit arylsulfatase, lactonase, or phosphotriesterase activities. However, Glx2-1 does exhibit beta-lactamase activity with k(cat)/KM values from 10(3) to 10(5) M(-1) s(-1). Glx2-1 can hydrolyze cephalosporins and carbapenems, albeit with rate constants slower than those of most metallo-beta-lactamases. The potential role of a beta-lactamase in the mitochondria of plant cells is briefly discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Mitocondriales/metabolismo , Tioléster Hidrolasas/metabolismo , beta-Lactamasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Carbapenémicos/metabolismo , Cefalosporinas/metabolismo , Humanos , Hidrólisis , Isoenzimas/química , Isoenzimas/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/química , Datos de Secuencia Molecular , Pliegue de Proteína , Especificidad por Sustrato , Tioléster Hidrolasas/química , beta-Lactamasas/química
14.
Plants (Basel) ; 7(4)2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30511704

RESUMEN

Immunolocalization studies to visualize the distribution of proteins on meiotic chromosomes have become an integral part of studies on meiosis in the model organism Arabidopsis thaliana. These techniques have been used to visualize a wide range of meiotic proteins involved in different aspects of meiosis, including sister chromatid cohesion, recombination, synapsis, and chromosome segregation. However, the analysis of meiotic spindle structure by immunofluorescence is of outstanding importance in plant reproductive biology and is very challenging. In the following report, we describe the complete and easy protocol for the localization of proteins to the male meiotic spindle and male meiotic chromosomes. The protocol is fast, improved, and robust without the use of any harsh enzymes.

15.
Front Plant Sci ; 8: 846, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28588601

RESUMEN

In eukaryotic organisms, the correct regulation of sister chromatid cohesion, whereby sister chromatids are paired and held together, is essential for accurate segregation of the sister chromatids and homologous chromosomes into daughter cells during mitosis and meiosis, respectively. Sister chromatid cohesion requires a cohesin complex comprised of structural maintenance of chromosome adenosine triphosphatases and accessory proteins that regulate the association of the complex with chromosomes or that are involved in the establishment or release of cohesion. The cohesin complex also plays important roles in the repair of DNA double-strand breaks, regulation of gene expression and chromosome condensation. In this review, we summarize progress in understanding cohesion dynamics in plants, with the aim of uncovering differences at specific stages. We also highlight dissimilarities between plants and other eukaryotes with respect to the key players involved in the achievement of cohesion, pointing out areas that require further study.

16.
J Genet Genomics ; 41(3): 153-64, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24656235

RESUMEN

α-kleisins are core components of meiotic and mitotic cohesin complexes. Arabidopsis contains genes encoding four α-kleisins. SYN1, a REC8 ortholog, is essential for meiosis, while SYN2 and SYN4 appear to be SCC1 orthologs and function in mitosis. SYN3 is enriched in the nucleolus of meiotic and mitotic cells and is essential for megagametogenesis. It was recently shown that expression of SYN3-RNAi constructs in buds cause changes in meiotic gene expression that result in meiotic alterations. In this report we show that expression of SYN3 from the 35S promoter with either a c-terminal Myc or FAST tag causes a reduction in SYN1 mRNA levels that results in alterations in sister chromatid cohesion, homologous chromosome synapsis and synaptonemal complex formation during both male and female meiosis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Meiosis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Emparejamiento Cromosómico , Cromosomas de las Plantas/genética , Fertilidad , Expresión Génica , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Polen/metabolismo , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo , Transcripción Genética
17.
PLoS One ; 9(4): e95971, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24760003

RESUMEN

The glyoxalase pathway, which consists of the two enzymes, GLYOXALASE 1 (GLX 1) (E.C.: 4.4.1.5) and 2 (E.C.3.1.2.6), has a vital role in chemical detoxification. In Arabidopsis thaliana there are at least four different isoforms of glyoxalase 2, two of which, GLX2-1 and GLX2-4 have not been characterized in detail. Here, the functional role of Arabidopsis thaliana GLX2-1 is investigated. Glx2-1 loss-of-function mutants and plants that constitutively over-express GLX2-1 resemble wild-type plants under normal growth conditions. Insilico analysis of publicly available microarray datasets with ATTEDII, Mapman and Genevestigator indicate potential role(s) in stress response and acclimation. Results presented here demonstrate that GLX2-1 gene expression is up-regulated in wild type Arabidopsis thaliana by salt and anoxia stress, and by excess L-Threonine. Additionally, a mutation in GLX2-1 inhibits growth and survival during abiotic stresses. Metabolic profiling studies show alterations in the levels of sugars and amino acids during threonine stress in the plants. Elevated levels of polyamines, which are known stress markers, are also observed. Overall our results suggest that Arabidopsis thaliana GLX2-1 is not essential during normal plant life, but is required during specific stress conditions.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/enzimología , Hipoxia de la Célula , Simulación por Computador , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Mutación , Estrés Fisiológico , Treonina/metabolismo
18.
Methods Mol Biol ; 990: 109-18, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23559207

RESUMEN

Immunolocalization studies to visualize the distribution of proteins on meiotic chromosomes have become an integral part of studies on meiosis in the model organism Arabidopsis thaliana. This chapter describes fixation, sample preparation, and immunolocalization techniques used in our laboratory. These techniques have been used to visualize a wide range of meiotic proteins involved in different aspects of meiosis, including sister chromatid cohesion, recombination, synapsis, and chromosome segregation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Meiosis , Microscopía Fluorescente/métodos , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas de las Plantas/metabolismo , Células Germinativas de las Plantas
19.
Curr Protein Pept Sci ; 12(2): 93-104, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21348848

RESUMEN

Cohesin complexes are critical for holding sister chromatids together during nuclear division. They also play important roles in the compaction of chromosomes and their bipolar attachment to the spindle, DNA double strand break repair, and the regulation of gene expression. Studies on sister chromatid cohesion in a wide range of organisms have shown that the proteins involved, and the general events of this important process are conserved between yeast, plants and animals. However, species-specific differences have been identified. In this review a general overview of cohesins, their roles and mechanisms of action is presented, followed by a review of our current state of knowledge on plant cohesins. While plants utilize the same general set of cohesin proteins and similar processes to establish and release sister chromatid cohesion, they also exhibit a number of unique features that are likely to provide interesting new insights into the roles of these important proteins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Plantas/metabolismo , Cromátides/metabolismo , Segregación Cromosómica , Cromosomas de las Plantas/metabolismo , Reparación del ADN , ADN de Plantas , Cohesinas
20.
PLoS One ; 6(4): e19459, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559383

RESUMEN

The caspase-family protease, separase, is required at the onset of anaphase to cleave the cohesin complex that joins replicated sister chromatids. However, in various eukaryotes, separase has acquired additional and distinct functions. A single amino-acid substitution in separase is responsible for phenotypes of the Arabidopsis thaliana mutant, radially swollen 4 (rsw4). This is a conditional mutant, resembling the wild type at the permissive temperature (∼20°C) and expressing mutant phenotypes at the restrictive temperature (∼30°C). Root cells in rsw4 at the restrictive temperature undergo non-disjunction and other indications of the loss of separase function. To determine to what extent separase activity remains at 30°C, we examined the effect of the mutation on meiosis, where the effects of loss of separase activity through RNA interference are known; and in addition, we examined female gametophyte development. Here, we report that, at the restrictive temperature, replicated chromosomes in rsw4 meiocytes typically fail to disjoin and the cohesin complex remains at centromeres after metaphase. Meiotic spindles appear normal in rsw4 male meiocytes; however the mutation disrupts the radial microtubule system, which is replaced by asymmetric arrays. Surprisingly, female gametophyte development was relatively insensitive to loss of separase activity, through either rsw4 or RNAi. These effects confirm that phenotypes in rsw4 result from loss of separase activity and establish a role for separase in regulating cell polarization following male meiosis.


Asunto(s)
Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Cromosomas/ultraestructura , Endopeptidasas/genética , Microtúbulos/ultraestructura , Mutación , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/ultraestructura , Cromátides/ultraestructura , Proteínas Cromosómicas no Histona/metabolismo , Genes de Plantas , Hibridación Fluorescente in Situ , Meiosis , Metafase , Profase , Interferencia de ARN , Separasa , Temperatura , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA