Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686386

RESUMEN

The aim of this work was to understand the main structural features and ways of formation of Ge-O bonds in organogermanium compounds under the conditions of ArnGeHal4-n (Hal = halide) hydrolysis. The structural types of these compounds were considered, providing 11 blocks (A-K). The molecular structures of the novel compounds [(p-FC6H4)3Ge]2O (1), [(p-F3CC6H4)3Ge]2O (2), and cyclo-[(p-F3CC6H4)2GeO]4 (3) were studied through XRD (X-ray diffraction) analysis. The molecular structure of [(p-F3CC6H4)3GeO]4Ge (4), representing a novel structural type, was also investigated. The data presented in this study will be important in the design of materials with useful properties based on group 14 element derivatives with element-oxygen bonding.


Asunto(s)
Oxígeno , Cristalografía por Rayos X , Hidrólisis
2.
Polymers (Basel) ; 15(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38006171

RESUMEN

Vinyl-addition polynorbornenes are of great interest as versatile templates for the targeted design of polymer materials with desired properties. These polymers possess rigid and saturated backbones, which provide them with high thermal and chemical stability as well as high glass transition temperatures. Vinyl-addition polymers from norbornenes with bromoalkyl groups are widely used as precursors of anion exchange membranes; however, high-molecular-weight homopolymers from such monomers are often difficult to prepare. Herein, we report the systematic study of vinyl-addition polymerization of norbornenes with various bromoalkyl groups on Pd-catalysts bearing N-heterocyclic carbene ligands ((NHC)Pd-systems). Norbornenes with different lengths of hydrocarbon linker (one, two, and four CH2 groups) between the bicyclic norbornene moiety and the bromine atom were used as model monomers, while single- and three-component (NHC)Pd-systems were applied as catalysts. In vinyl-addition polymerization, the reactivity of the investigated monomers varied substantially. The relative reactivity of these monomers was assessed in copolymerization experiments, which showed that the closer the bromine is to the norbornene double-bond, the lower the monomer's reactivity. The most reactive monomer was the norbornene derivative with the largest substituent (with the longest linker). Tuning the catalyst's nature and the conditions of polymerization, we succeeded in synthesizing high-molecular-weight homopolymers from norbornenes with bromoalkyl groups (Mn up to 1.4 × 106). The basic physico-chemical properties of the prepared polymers were studied and considered together with the results of vinyl-addition polymerization.

3.
Polymers (Basel) ; 15(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36771993

RESUMEN

The manufacturing of paper with new functional properties is a current problem today. A method of modifying the surface layer of paper by the partial dissolution of cellulose on its surface is proposed. N-Methylmorpholine-N-oxide (NMMO) is proposed for use as a solvent, the regeneration of which provides an environmentally friendly process. It was shown that among the possible hydrate forms of the solvent, the monohydrate and higher-melting forms are optimal for modifying the paper surface. The temperature-time modes of processing were revealed and the weight gain and density increase in the course of modification were estimated. The structural and morphological features of the original and modified paper were studied by X-ray imaging and scanning microscopy. The NMMO surface treatment makes it possible to vary the air permeability of the paper, making it practically non-permeable. The capillary and pore system were radically transformed after the partial dissolution of cellulose and its coagulation, as the formed cellulose film isolates them, which leads to a decrease in surface absorbency. The processing conditions allowing for the optimization of the optical and strength properties of the modified paper samples are revealed. The resulting paper with a modified N-methylmorpholine-N-oxide surface layer can be used for printing valuable documents.

4.
Materials (Basel) ; 16(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37687536

RESUMEN

Morphological transformations in emulsions of cellulose and polyacrylonitrile (PAN) ternary copolymers containing acrylonitrile, methyl acrylate, and methylsulfonate comonomers in N-methylmorpholine-N-oxide were studied over the entire range of concentrations depending on temperature and intensity of the deformation action. Based on the morphological and rheological features of the system, the temperature-concentration range of spinnability of mixed solutions was determined, and composite fibers were spun. The fibers are characterized by a heterogeneous fibrillar texture. Studies of the structure of the fibers, carried out using X-ray diffraction analysis, revealed a decrease in cellulose crystallinity with an increase in the content of PAN. The study of the thermal properties of the obtained fibers, carried out using DSC, and chemical transformations in them in a wide temperature range by high-temperature diffuse reflection IR spectroscopy made it possible to reveal a new intense exothermic peak on the thermograms at 360 °C, which according to the IR spectra corresponds to the transformation of intermacromolecular physical interactions of the PAN and cellulose into covalent bonds between polymers. In addition, the ester groups found during the thermal treatment of the PAN part of the composite fibers in the pyrolysis zone can have a key effect on the process of their further carbonization.

5.
Membranes (Basel) ; 13(7)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505033

RESUMEN

Cellulose and copolymers of acrylonitrile (PAN) are characterized by their chemical resistance to several conventional solvents. Therefore, these polymers are often used to obtain membranes for the recovery of such solvents. In this work, for the first time, composite membranes formed from highly concentrated mixed solutions based on cellulose and PAN are considered (the total content of polymers is 18 wt.%). For mixed solutions, the morphology and rheological behavior were evaluated. It is shown that the resulting solutions are two-phase, and their morphology depends on the components' ratio and the system's history. The non-monotonous change in the viscosity with the PAN content indicates a specific interaction of cellulose and PAN in N-methylmorpholine-N-oxide solutions. The rheological behavior of mixed solutions allows for their processing in conditions identical to those of cellulose solutions. The introduction of PAN into the cellulose matrix promotes a decrease in the structural order in the system, affecting the membranes' transport properties. For composite membranes, it was found that with an increase in the content of the PAN phase, the retention of Remazol and Orange decreases, while the observed values are several times higher than those for cellulose membranes. The permeability of ethanol increases with increasing terpolymer content.

6.
Polymers (Basel) ; 14(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35890637

RESUMEN

An original method is proposed for preparing highly concentrated solutions of PAN copolymer in N-methylmorpholine-N-oxide (NMMO) and forming membranes for nanofiltration from these solutions. The high activity of the solvent with respect to the polymer provides short preparation time of spinning solutions in comparison with PAN solutions obtained in other solvents. The use of the rheological approach made it possible to find the optimal concentration for obtaining membranes. The formation of PAN membranes from the obtained solutions is proposed by the rolling method. The morphology of the formed membranes depends on the method of removing the precipitant from the sample. The features of the formed morphology of PAN membranes were studied by scanning electron microscopy. It was revealed that the use of water as a rigid precipitant leads to the formation of a homogeneous and symmetric morphology in the membrane. The average pore sizes in the membrane have been obtained by porosimetry. The study of the separating properties of PAN membranes revealed noteworthy values of the permeability and rejection for the anionic dyes Orange II and Remazol Brilliant Blue (74 and 97%, respectively). The mechanical properties of PAN membranes from solutions in NMMO are not inferior to analogs formed from commercially used direct solvents.

7.
Polymers (Basel) ; 14(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35808741

RESUMEN

Polymers from norbornenes are of interest for applications in opto- and microelectronic (low dielectric materials, photoresists, OLEDs). Norbornenes with ester motifs are among the most readily available norbornene derivatives. However, little is known about dielectric properties and the gas-transport of polynorbornenes from such monomers. Herein, we synthesized a new metathesis polymer from exo-5-norbornenecarboxylic acid and 1,1'-bi-2-naphthol. The designed monomer was obtained via a two-step procedure in a good yield. This norbornene derivative with a rigid and a bulky binaphthyl group was successfully polymerized over the 1st generation Grubbs catalyst, affording high-molecular-weight products (Mw ≤ 1.5·106) in yields of 94-98%. The polymer is amorphous and glassy (Tg = 161 °C), and it shows good thermal stability. Unlike most, polyNBi is a classic low-permeable glassy polymer. The selectivity of polyNBi was higher than that of polyNB. Being less permeable than polyNB, polyNBi unexpectedly showed a lower value of dielectric permittivity (2.7 for polyNBi vs. 5.0 for polyNB). Therefore, the molecular design of polynorbornenes has great potential to obtain polymers with desired properties in a wide range of required characteristics. Further tuning of the gas separation efficiency can be achieved by attaching an appropriate substituent to the ester and aryl group.

8.
Membranes (Basel) ; 12(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35323772

RESUMEN

The work is focused on the study of the influence of the cellulose type and processing parameters on the structure, morphology, and permeability of cellulose films. The free volume of the cellulose films was evaluated by the sorption of n-decane, which is a non-solvent for cellulose. The structural features of the membranes and their morphology were studied using X-ray diffraction, IR spectroscopy, SEM, and AFM methods. The characteristic features of the porous structure and properties of cellulose films regenerated from cellulose solutions in the N-methylmorpholine-N-oxide (NMMO) and cellophane films were compared. Generally, cellulose films obtained from solutions in NMMO have a higher permeability and a lower rejection (as measured using Orange II dye) as compared to cellophane films. It was also found that the cellulose films have a higher ultimate strength and modulus, whereas the cellophane films are characterized by higher elongation at break.

9.
Carbohydr Polym ; 254: 117472, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33357926

RESUMEN

The evolution of structural-morphological transformations of cellulose membranes obtained from solutions in N-methylmorpholine-N-oxide through various temperature isobutanol coagulation baths and subsequent treatment with water and their transport properties were studied. Using SEM, it was found that during coagulation in water and drying of the membranes, a uniform monolithic microheterogeneous texture was formed. The replacement of an aqueous precipitation bath with an isobutanol one leads to the formation of a porous structure with wide pore size and shape distributions. With an increase in precipitant temperature in the as-formed membrane, transverse tunnel cavities are formed with respect to the membrane-forming axis, which collapses when the membrane is washed with water, forming a dense texture with a non-uniform membrane volume. The mechanical properties of the obtained membranes were determined and a mechanism is proposed that allows their values to be correlated with structural-morphological and transport properties.


Asunto(s)
Butanoles/química , Celulosa/química , Óxidos N-Cíclicos/química , Membranas Artificiales , Morfolinas/química , Celulosa/ultraestructura , Porosidad , Soluciones , Temperatura , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA